RESUMEN
Zearalenone (ZEN) has been shown to cause reproductive damage by inducing oxidative stress. Astaxanthin and L-carnitine are widely used to alleviate oxidative stress and promote sperm maturation. However, it remains uncertain whether they are effective in mitigating spermatogenesis disorders induced by ZEN. This study aimed to investigate the therapeutic efficacy and potential mechanisms of Vigor King (Vig), a compound preparation primarily consisting of astaxanthin and L-carnitine, in alleviating ZEN-induced spermatogenesis disorders. In the experiment, mice received continuous oral gavage of ZEN (80⯵g/kg) for 35 days, accompanied by a rescue strategy with Vig (200â¯mg/kg). The results showed that Vig effectively reduced the negative impact on semen quality and improved the structural and functional abnormalities of the seminiferous epithelium caused by ZEN. Additionally, the accumulation of reactive oxygen species (ROS), DNA double-strand breaks, apoptosis, and autophagy abnormalities were all significantly ameliorated. Intriguingly, the GSK3ß-dependent BTRC-NRF2 signaling pathway was found to play an important role in this process. Furthermore, testing of offspring indicated that Vig could extend its protective effects to the next generation, effectively combating the transgenerational toxic effects of ZEN. In summary, our research suggests that Vig supplementation holds considerable promise in alleviating spermatogenesis disorders induced by zearalenone.
Asunto(s)
Espermatogénesis , Zearalenona , Animales , Zearalenona/toxicidad , Masculino , Espermatogénesis/efectos de los fármacos , Ratones , Especies Reactivas de Oxígeno/metabolismo , Carnitina/farmacología , Estrés Oxidativo/efectos de los fármacos , Apoptosis/efectos de los fármacos , Estrógenos no Esteroides/toxicidad , Femenino , XantófilasRESUMEN
Rationale: In recent years, nicotinamide adenine dinucleotide (NAD+) precursors (Npre) have been widely employed to ameliorate female reproductive problems in both humans and animal models. However, whether and how Npre plays a role in the male reproductive disorder has not been fully clarified. Methods: In the present study, a busulfan-induced non-obstructive azoospermic mouse model was used, and Npre was administered for five weeks following the drug injection, with the objective of reinstating spermatogenesis and fertility. Initially, we assessed the NAD+ level, germ cell types, semen parameters and sperm fertilization capability. Subsequently, testis tissues were examined through RNA sequencing analysis, ELISA, H&E, immunofluorescence, quantitative real-time PCR, and Western blotting techniques. Results: The results indicated that Npre restored normal level of NAD+ in blood and significantly alleviated the deleterious effects of busulfan (BU) on spermatogenesis, thereby partially reestablishing fertilization capacity. Transcriptome analysis, along with recovery of testicular Fe2+, GSH, NADPH, and MDA levels, impaired by BU, and the fact that Fer-1, an inhibitor of ferroptosis, restored spermatogenesis and semen parameters close to CTRL values, supported such possibility. Interestingly, the reduction in SIRT2 protein level by the specific inhibitor AGK2 attenuated the beneficial effects of Npre on spermatogenesis and ferroptosis by affecting PGC-1α and ACLY protein levels, thus suggesting how these compounds might confer spermatogenesis protection. Conclusion: Collectively, these findings indicate that NAD+ protects spermatogenesis against ferroptosis, probably through SIRT2 dependent mechanisms. This underscores the considerable potential of Npre supplementation as a feasible strategy for preserving or restoring spermatogenesis in specific conditions of male infertility and as adjuvant therapy to preserve male fertility in cancer patients receiving sterilizing treatments.