Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Sci China Life Sci ; 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38987431

RESUMEN

Winter plants rely on vernalization, a crucial process for adapting to cold conditions and ensuring successful reproduction. However, understanding the role of histone modifications in guiding the vernalization process in winter wheat remains limited. In this study, we investigated the transcriptome and chromatin dynamics in the shoot apex throughout the life cycle of winter wheat in the field. Two core histone modifications, H3K27me3 and H3K36me3, exhibited opposite patterns on the key vernalization gene VERNALIZATION1 (VRN1), correlating with its induction during cold exposure. Moreover, the H3K36me3 level remained high at VRN1 after cold exposure, which may maintain its active state. Mutations in FERTILIZATION-INDEPENDENT ENDOSPERM (TaFIE) and SET DOMAIN GROUP 8/EARLY FLOWERING IN SHORT DAYS (TaSDG8/TaEFS), components of the writer complex for H3K27me3 and H3K36me3, respectively, affected flowering time. Intriguingly, VRN1 lost its high expression after the cold exposure memory in the absence of H3K36me3. During embryo development, VRN1 was silenced with the removal of active histone modifications in both winter and spring wheat, with selective restoration of H3K27me3 in winter wheat. The mutant of Tafie-cr-87, a component of H3K27me3 "writer" complex, did not influence the silence of VRN1 during embryo development, but rather attenuated the cold exposure requirement of winter wheat. Integrating gene expression with H3K27me3 and H3K36me3 patterns identified potential regulators of flowering. This study unveils distinct roles of H3K27me3 and H3K36me3 in controlling vernalization response, maintenance, and resetting in winter wheat.

2.
J Integr Plant Biol ; 66(7): 1295-1312, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38695649

RESUMEN

Cultivating high-yield wheat under limited water resources is crucial for sustainable agriculture in semiarid regions. Amid water scarcity, plants activate drought response signaling, yet the delicate balance between drought tolerance and development remains unclear. Through genome-wide association studies and transcriptome profiling, we identified a wheat atypical basic helix-loop-helix (bHLH) transcription factor (TF), TabHLH27-A1, as a promising quantitative trait locus candidate for both relative root dry weight and spikelet number per spike in wheat. TabHLH27-A1/B1/D1 knock-out reduced wheat drought tolerance, yield, and water use efficiency (WUE). TabHLH27-A1 exhibited rapid induction with polyethylene glycol (PEG) treatment, gradually declining over days. It activated stress response genes such as TaCBL8-B1 and TaCPI2-A1 while inhibiting root growth genes like TaSH15-B1 and TaWRKY70-B1 under short-term PEG stimulus. The distinct transcriptional regulation of TabHLH27-A1 involved diverse interacting factors such as TaABI3-D1 and TabZIP62-D1. Natural variations of TabHLH27-A1 influence its transcriptional responses to drought stress, with TabHLH27-A1Hap-II associated with stronger drought tolerance, larger root system, more spikelets, and higher WUE in wheat. Significantly, the excellent TabHLH27-A1Hap-II was selected during the breeding process in China, and introgression of TabHLH27-A1Hap-II allele improved drought tolerance and grain yield, especially under water-limited conditions. Our study highlights TabHLH27-A1's role in balancing root growth and drought tolerance, providing a genetic manipulation locus for enhancing WUE in wheat.


Asunto(s)
Sequías , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Raíces de Plantas , Triticum , Agua , Triticum/genética , Triticum/crecimiento & desarrollo , Triticum/fisiología , Triticum/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Agua/metabolismo , Sitios de Carácter Cuantitativo/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Estrés Fisiológico/genética , Estudio de Asociación del Genoma Completo , Resistencia a la Sequía
3.
Cell ; 187(12): 3024-3038.e14, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38781969

RESUMEN

Plants frequently encounter wounding and have evolved an extraordinary regenerative capacity to heal the wounds. However, the wound signal that triggers regenerative responses has not been identified. Here, through characterization of a tomato mutant defective in both wound-induced defense and regeneration, we demonstrate that in tomato, a plant elicitor peptide (Pep), REGENERATION FACTOR1 (REF1), acts as a systemin-independent local wound signal that primarily regulates local defense responses and regenerative responses in response to wounding. We further identified PEPR1/2 ORTHOLOG RECEPTOR-LIKE KINASE1 (PORK1) as the receptor perceiving REF1 signal for plant regeneration. REF1-PORK1-mediated signaling promotes regeneration via activating WOUND-INDUCED DEDIFFERENTIATION 1 (WIND1), a master regulator of wound-induced cellular reprogramming in plants. Thus, REF1-PORK1 signaling represents a conserved phytocytokine pathway to initiate, amplify, and stabilize a signaling cascade that orchestrates wound-triggered organ regeneration. Application of REF1 provides a simple method to boost the regeneration and transformation efficiency of recalcitrant crops.


Asunto(s)
Proteínas de Plantas , Regeneración , Transducción de Señal , Solanum lycopersicum , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Solanum lycopersicum/metabolismo , Regulación de la Expresión Génica de las Plantas , Péptidos/metabolismo
4.
Mol Plant ; 17(3): 438-459, 2024 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-38310351

RESUMEN

The spike architecture of wheat plays a crucial role in determining grain number, making it a key trait for optimization in wheat breeding programs. In this study, we used a multi-omic approach to analyze the transcriptome and epigenome profiles of the young spike at eight developmental stages, revealing coordinated changes in chromatin accessibility and H3K27me3 abundance during the flowering transition. We constructed a core transcriptional regulatory network (TRN) that drives wheat spike formation and experimentally validated a multi-layer regulatory module involving TaSPL15, TaAGLG1, and TaFUL2. By integrating the TRN with genome-wide association studies, we identified 227 transcription factors, including 42 with known functions and 185 with unknown functions. Further investigation of 61 novel transcription factors using multiple homozygous mutant lines revealed 36 transcription factors that regulate spike architecture or flowering time, such as TaMYC2-A1, TaMYB30-A1, and TaWRKY37-A1. Of particular interest, TaMYB30-A1, downstream of and repressed by WFZP, was found to regulate fertile spikelet number. Notably, the excellent haplotype of TaMYB30-A1, which contains a C allele at the WFZP binding site, was enriched during wheat breeding improvement in China, leading to improved agronomic traits. Finally, we constructed a free and open access Wheat Spike Multi-Omic Database (http://39.98.48.156:8800/#/). Our study identifies novel and high-confidence regulators and offers an effective strategy for dissecting the genetic basis of wheat spike development, with practical value for wheat breeding.


Asunto(s)
Estudio de Asociación del Genoma Completo , Triticum , Triticum/genética , Fitomejoramiento , Redes Reguladoras de Genes/genética , Multiómica , Factores de Transcripción/genética
5.
BMC Plant Biol ; 24(1): 1, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38163871

RESUMEN

BACKGROUND: Wheat is one of the main grain crops in the world, and the tiller number is a key factor affecting the yield of wheat. Phosphorus is an essential element for tiller development in wheat. However, due to decreasing phosphorus content in soil, there has been increasing use of phosphorus fertilizer, while imposing risk of soil and water pollution. Hence, it is important to identify low phosphorus tolerance genes and utilize them for stress resistance breeding in wheat. RESULTS: We subjected the wheat variety Kenong 199 (KN199) to low phosphorus stress and observed a reduced tiller number. Using transcriptome analysis, we identified 1651 upregulated genes and 827 downregulated of genes after low phosphorus stress. The differentially expressed genes were found to be enriched in the enzyme activity regulation related to phosphorus, hormone signal transduction, and ion transmembrane transport. Furthermore, the transcription factor analysis revealed that TaWRKY74s were important for low phosphorus tolerance. TaWRKY74s have three alleles: TaWRKY74-A, TaWRKY74-B, and TaWRKY74-D, and they all belong to the WRKY family with conserved WRKYGQK motifs. These proteins were found to be located in the nucleus, and they were expressed in axillary meristem, shoot apical meristem(SAM), young leaves, leaf primordium, and spikelet primordium. The evolutionary tree showed that TaWRKY74s were closely related to OsWRKY74s in rice. Moreover, TaWRKY74s-RNAi transgenic plants displayed significantly fewer tillers compared to wild-type plants under normal conditions. Additionally, the tiller numebr of the RNAi transgenic plants was also significantly lower than that of the wild-type plants under low-phosphorus stress, and increased the decrease amplitude. This suggestd that TaWRKY74s are related to phosphorus response and can affect the tiller number of wheat. CONCLUSIONS: The results of this research showed that TaWRKY74s were key genes in wheat response to low phosphorus stress, which might regulate wheat tiller number through abscisic acid (ABA) and auxin signal transduction pathways. This research lays the foundation for further investigating the mechanism of TaWRKY74s in the low phosphorus environments and is significant for wheat stress resistance breeding.


Asunto(s)
Fitomejoramiento , Triticum , Triticum/metabolismo , Perfilación de la Expresión Génica , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Fósforo/metabolismo , Suelo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
6.
Acta cir. bras ; 38: e383123, 2023. graf
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-1519885

RESUMEN

Purpose: It has been explored that sevoflurane (Sevo) is cardioprotective in myocardial ischemia/reperfusion injury (MI/RI) and mediates microRNA (miRNA) expression that control various physiological systems. Enlightened by that, the work was programmed to decode the mechanism of Sevo and miR-99a with the participation of bromodomain-containing protein 4 (BRD4). Methods: MI/RImodel was established on mice. MI/RI modeled mice were exposed to Sevo or injected with miR-99a or BRD4-related vectors to identify their functions in cardiac function, pathological injury, cardiomyocyte apoptosis, inflammation, and oxidative stress in MI/RI mice. MiR-99a and BRD4 expression in myocardial tissues were tested, and their relation was further validated. Results: MiR-99a was down-regulated, and BRD4 was up-regulated in MI/RI mice. Sevo up-regulated miR-99a to inhibit BRD4 expression in myocardial tissues of MI/RI mice. Sevo improved cardiac function, relieved myocardial injury, repressed cardiomyocyte apoptosis, and alleviated inflammation and oxidative stress in mice with MI/RI. MiR-99a restoration further enhanced the positive effects of Sevo on mice with MI/RI. Overexpression of BRD4 reversed up-regulation of miR-99a-induced attenuation of MI/RI in mice. Conclusions: The work delineated that Sevo up-regulates miR-99a to attenuate MI/RI by inhibiting BRD4.


Asunto(s)
Animales , Ratones , Daño por Reperfusión , Isquemia Miocárdica , Sevoflurano/administración & dosificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA