Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 202
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Sci Transl Med ; 16(756): eadi9548, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39018368

RESUMEN

Immune rejection remains the major obstacle to long-term survival of allogeneic lung transplants. The expression of major histocompatibility complex molecules and minor histocompatibility antigens triggers allogeneic immune responses that can lead to allograft rejection. Transplant outcomes therefore depend on long-term immunosuppression, which is associated with severe side effects. To address this problem, we investigated the effect of genetically engineered transplants with permanently down-regulated swine leukocyte antigen (SLA) expression to prevent rejection in a porcine allogeneic lung transplantation (LTx) model. Minipig donor lungs with unmodified SLA expression (control group, n = 7) or with modified SLA expression (treatment group, n = 7) were used to evaluate the effects of SLA knockdown on allograft survival and on the nature and strength of immune responses after terminating an initial 4-week period of immunosuppression after LTx. Genetic engineering to down-regulate SLA expression was achieved during ex vivo lung perfusion by lentiviral transduction of short hairpin RNAs targeting mRNAs encoding ß2-microglobulin and class II transactivator. Whereas all grafts in the control group were rejected within 3 months, five of seven animals in the treatment group maintained graft survival without immunosuppression during the 2-year monitoring period. Compared with controls, SLA-silenced lung recipients had lower donor-specific antibodies and proinflammatory cytokine concentrations in the serum. Together, these data demonstrate a survival benefit of SLA-down-regulated lung transplants in the absence of immunosuppression.


Asunto(s)
Técnicas de Silenciamiento del Gen , Supervivencia de Injerto , Antígenos de Histocompatibilidad Clase I , Terapia de Inmunosupresión , Trasplante de Pulmón , Animales , Porcinos , Supervivencia de Injerto/inmunología , Antígenos de Histocompatibilidad Clase I/metabolismo , Rechazo de Injerto/inmunología , Porcinos Enanos , Antígenos de Histocompatibilidad Clase II/metabolismo , Trasplante Homólogo , Microglobulina beta-2/genética , Microglobulina beta-2/metabolismo , Pulmón/metabolismo , Proteínas Nucleares , Transactivadores
2.
HLA ; 103(6): e15541, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38923358

RESUMEN

Complications due to HCMV infection or reactivation remain a challenging clinical problem in immunocompromised patients, mainly due to insufficient or absent T-cell functionality. Knowledge of viral targets is crucial to improve monitoring of high-risk patients and optimise antiviral T-cell therapy. To expand the epitope spectrum, genetically-engineered dendritic cells (DCs) and fibroblasts were designed to secrete soluble (s)HLA-A*11:01 and infected with an HCMV mutant lacking immune evasion molecules (US2-6 + 11). More than 700 HLA-A*11:01-restricted epitopes, including more than 50 epitopes derived from a broad range of HCMV open-reading-frames (ORFs) were identified by mass spectrometry and screened for HLA-A*11:01-binding using established prediction tools. The immunogenicity of the 24 highest scoring new candidates was evaluated in vitro in healthy HLA-A*11:01+/HCMV+ donors. Thus, four subdominant epitopes and one immunodominant epitope, derived from the anti-apoptotic protein UL36 and ORFL101C (A11SAL), were identified. Their HLA-A*11:01 complex stability was verified in vitro. In depth analyses revealed highly proliferative and cytotoxic memory T-cell responses against A11SAL, with T-cell responses comparable to the immunodominant HLA-A*02:01-restricted HCMVpp65NLV epitope. A11SAL-specific T cells were also detectable in vivo in immunosuppressed transplant patients and shown to be effective in an in vitro HCMV-infection model, suggesting their crucial role in inhibiting viral replication and improvement of patient's outcome. The developed in vitro pipeline is the first to utilise genetically-engineered DCs to identify naturally presented immunodominant HCMV-derived epitopes. It therefore offers advantages over in silico predictions, is transferable to other HLA alleles, and will significantly expand the repertoire of viral targets to improve therapeutic options.


Asunto(s)
Infecciones por Citomegalovirus , Citomegalovirus , Células Dendríticas , Epítopos de Linfocito T , Epítopos Inmunodominantes , Humanos , Citomegalovirus/inmunología , Infecciones por Citomegalovirus/inmunología , Epítopos Inmunodominantes/inmunología , Células Dendríticas/inmunología , Epítopos de Linfocito T/inmunología , Antígeno HLA-A11/inmunología , Antígeno HLA-A11/genética , Fibroblastos/inmunología , Fibroblastos/virología , Células Presentadoras de Antígenos/inmunología
3.
Front Immunol ; 15: 1404668, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38903492

RESUMEN

Heart transplantation is associated with major hurdles, including the limited number of available organs for transplantation, the risk of rejection due to genetic discrepancies, and the burden of immunosuppression. In this study, we demonstrated the feasibility of permanent genetic engineering of the heart during ex vivo perfusion. Lentiviral vectors encoding for short hairpin RNAs targeting beta2-microglobulin (shß2m) and class II transactivator (shCIITA) were delivered to the graft during two hours of normothermic EVHP. Highly efficient genetic engineering was indicated by stable reporter gene expression in endothelial cells and cardiomyocytes. Remarkably, swine leucocyte antigen (SLA) class I and SLA class II expression levels were decreased by 66% and 76%, respectively, in the vascular endothelium. Evaluation of lactate, troponin T, and LDH levels in the perfusate and histological analysis showed no additional cell injury or tissue damage caused by lentiviral vectors. Moreover, cytokine secretion profiles (IL-6, IL-8, and TNF-α) of non-transduced and lentiviral vector-transduced hearts were comparable. This study demonstrated the ex vivo generation of genetically engineered hearts without compromising tissue integrity. Downregulation of SLA expression may contribute to reduce the immunogenicity of the heart and support graft survival after allogeneic or xenogeneic transplantation.


Asunto(s)
Vectores Genéticos , Trasplante de Corazón , Antígenos de Histocompatibilidad Clase I , Lentivirus , Animales , Lentivirus/genética , Trasplante de Corazón/métodos , Vectores Genéticos/genética , Porcinos , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase I/inmunología , Antígenos de Histocompatibilidad Clase I/metabolismo , Perfusión/métodos , Antígenos de Histocompatibilidad Clase II/genética , Antígenos de Histocompatibilidad Clase II/metabolismo , Antígenos de Histocompatibilidad Clase II/inmunología , Microglobulina beta-2/genética , Citocinas/metabolismo , Ingeniería Genética , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/inmunología , Humanos , ARN Interferente Pequeño/genética , Supervivencia de Injerto/inmunología , Supervivencia de Injerto/genética , Células Endoteliales/metabolismo , Células Endoteliales/inmunología , Proteínas Nucleares , Transactivadores
4.
Transpl Int ; 37: 12720, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38655204

RESUMEN

Infectious complications, including widespread human cytomegalovirus (CMV) disease, frequently occur after hematopoietic stem cell and solid organ transplantation due to immunosuppressive treatment causing impairment of T-cell immunity. Therefore, in-depth analysis of the impact of immunosuppressants on antiviral T cells is needed. We analyzed the impact of mTOR inhibitors sirolimus (SIR/S) and everolimus (EVR/E), calcineurin inhibitor tacrolimus (TAC/T), purine synthesis inhibitor mycophenolic acid (MPA/M), glucocorticoid prednisolone (PRE/P) and common double (T+S/E/M/P) and triple (T+S/E/M+P) combinations on antiviral T-cell functionality. T-cell activation and effector molecule production upon antigenic stimulation was impaired in presence of T+P and triple combinations. SIR, EVR and MPA exclusively inhibited T-cell proliferation, TAC inhibited activation and cytokine production and PRE inhibited various aspects of T-cell functionality including cytotoxicity. This was reflected in an in vitro infection model, where elimination of CMV-infected human fibroblasts by CMV-specific T cells was reduced in presence of PRE and all triple combinations. CMV-specific memory T cells were inhibited by TAC and PRE, which was also reflected with double (T+P) and triple combinations. EBV- and SARS-CoV-2-specific T cells were similarly affected. These results highlight the need to optimize immune monitoring to identify patients who may benefit from individually tailored immunosuppression.


Asunto(s)
Infecciones por Citomegalovirus , Citomegalovirus , Everolimus , Inmunosupresores , Ácido Micofenólico , Sirolimus , Linfocitos T , Tacrolimus , Humanos , Infecciones por Citomegalovirus/inmunología , Linfocitos T/inmunología , Linfocitos T/efectos de los fármacos , Citomegalovirus/inmunología , Sirolimus/farmacología , Sirolimus/uso terapéutico , Activación de Linfocitos/efectos de los fármacos , Prednisolona/uso terapéutico , Trasplante de Órganos , Proliferación Celular/efectos de los fármacos
5.
Front Immunol ; 15: 1279050, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38352884

RESUMEN

Xenotransplantation offers a promising alternative to circumvent the lack of donated human organs available for transplantation. Different attempts to improve the survival of xenografts led to the generation of transgenic pigs expressing various combinations of human protective genes or knocked out for specific antigens. Currently, testing the efficiency of porcine organs carrying different genetic modifications in preventing xenogeneic immune responses completely relies on in vitro assays, humanized mouse models, or non-human primate transplantation models. However, these tests are often associated with major concerns due to reproducibility and generation of insufficient data as well as they raise ethical, logistical, and economic issues. In this study, we investigated the feasibility of specifically assessing the strength of human T-cell responses towards the kidneys of wild-type (WT) or transgenic pigs overexpressing human programmed death-1 ligand 1 (hPD-L1) during ex vivo kidney perfusion (EVKP). Human T cells were shown to adhere to the endothelium and transmigrate into WT and hPD-L1 kidneys. However, transcript levels of TNF-a and IFN-y as well as cytotoxic molecules such as granzyme B and perforin secreted by human T cells were significantly decreased in the tissue of hPD-L1 kidneys in comparison to WT kidneys. These results were confirmed via in vitro assays using renal endothelial cells (ECs) isolated from WT and hPD-L1 transgenic pigs. Both CD4+ and CD8+ T cells showed significantly lower proliferation rates after exposure to hPD-L1 porcine renal ECs in comparison to WT ECs. In addition, the secretion of pro-inflammatory cytokines was significantly reduced in cultures using hPD-L1 ECs in comparison to WT ECs. Remarkably, hPD-L1 EC survival was significantly increased in cytotoxic assays. This study demonstrates the feasibility of evaluating the human response of specific immune subsets such as human T cells towards the whole xenograft during EVKP. This may represent a robust strategy to assess the potency of different genetic modifications to prevent xenogeneic immune responses and thereby predict the risk of immune rejection of new genetically engineered xenografts.


Asunto(s)
Antígeno B7-H1 , Linfocitos T CD8-positivos , Ratones , Animales , Porcinos , Humanos , Antígeno B7-H1/genética , Células Endoteliales , Reproducibilidad de los Resultados , Animales Modificados Genéticamente , Activación de Linfocitos , Riñón
6.
Commun Biol ; 7(1): 41, 2024 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-38182727

RESUMEN

Burkitt lymphoma (BL) is responsible for many childhood cancers in sub-Saharan Africa, where it is linked to recurrent or chronic infection by Epstein-Barr virus or Plasmodium falciparum. However, whether human leukocyte antigen (HLA) polymorphisms, which regulate immune response, are associated with BL has not been well investigated, which limits our understanding of BL etiology. Here we investigate this association among 4,645 children aged 0-15 years, 800 with BL, enrolled in Uganda, Tanzania, Kenya, and Malawi. HLA alleles are imputed with accuracy >90% for HLA class I and 85-89% for class II alleles. BL risk is elevated with HLA-DQA1*04:01 (adjusted odds ratio [OR] = 1.61, 95% confidence interval [CI] = 1.32-1.97, P = 3.71 × 10-6), with rs2040406(G) in HLA-DQA1 region (OR = 1.43, 95% CI = 1.26-1.63, P = 4.62 × 10-8), and with amino acid Gln at position 53 versus other variants in HLA-DQA1 (OR = 1.36, P = 2.06 × 10-6). The associations with HLA-DQA1*04:01 (OR = 1.29, P = 0.03) and rs2040406(G) (OR = 1.68, P = 0.019) persist in mutually adjusted models. The higher risk rs2040406(G) variant for BL is associated with decreased HLA-DQB1 expression in eQTLs in EBV transformed lymphocytes. Our results support the role of HLA variation in the etiology of BL and suggest that a promising area of research might be understanding the link between HLA variation and EBV control.


Asunto(s)
Linfoma de Burkitt , Infecciones por Virus de Epstein-Barr , Niño , Humanos , Linfoma de Burkitt/genética , Infecciones por Virus de Epstein-Barr/complicaciones , Infecciones por Virus de Epstein-Barr/genética , Herpesvirus Humano 4/genética , Cadenas alfa de HLA-DQ/genética
7.
Front Immunol ; 14: 1219165, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37915564

RESUMEN

Introduction: Chimeric antigen receptor-engineered T cells (CAR-Ts) are investigated in various clinical trials for the treatment of cancer entities beyond hematologic malignancies. A major hurdle is the identification of a target antigen with high expression on the tumor but no expression on healthy cells, since "on-target/off-tumor" cytotoxicity is usually intolerable. Approximately 90% of carcinomas and leukemias are positive for the Thomsen-Friedenreich carbohydrate antigen CD176, which is associated with tumor progression, metastasis and therapy resistance. In contrast, CD176 is not accessible for ligand binding on healthy cells due to prolongation by carbohydrate chains or sialylation. Thus, no "on-target/off-tumor" cytotoxicity and low probability of antigen escape is expected for corresponding CD176-CAR-Ts. Methods: Using the anti-CD176 monoclonal antibody (mAb) Nemod-TF2, the presence of CD176 was evaluated on multiple healthy or cancerous tissues and cells. To target CD176, we generated two different 2nd generation CD176-CAR constructs differing in spacer length. Their specificity for CD176 was tested in reporter cells as well as primary CD8+ T cells upon co-cultivation with CD176+ tumor cell lines as models for CD176+ blood and solid cancer entities, as well as after unmasking CD176 on healthy cells by vibrio cholerae neuraminidase (VCN) treatment. Following that, both CD176-CARs were thoroughly examined for their ability to initiate target-specific T-cell signaling and activation, cytokine release, as well as cytotoxicity. Results: Specific expression of CD176 was detected on primary tumor tissues as well as on cell lines from corresponding blood and solid cancer entities. CD176-CARs mediated T-cell signaling (NF-κB activation) and T-cell activation (CD69, CD137 expression) upon recognition of CD176+ cancer cell lines and unmasked CD176, whereby a short spacer enabled superior target recognition. Importantly, they also released effector molecules (e.g. interferon-γ, granzyme B and perforin), mediated cytotoxicity against CD176+ cancer cells, and maintained functionality upon repetitive antigen stimulation. Here, CD176L-CAR-Ts exhibited slightly higher proliferation and mediator-release capacities. Since both CD176-CAR-Ts did not react towards CD176- control cells, their response proved to be target-specific. Discussion: Genetically engineered CD176-CAR-Ts specifically recognize CD176 which is widely expressed on cancer cells. Since CD176 is masked on most healthy cells, this antigen and the corresponding CAR-Ts represent a promising approach for the treatment of various blood and solid cancers while avoiding "on-target/off-tumor" cytotoxicity.


Asunto(s)
Linfocitos T CD8-positivos , Leucemia , Humanos , Antígenos de Carbohidratos Asociados a Tumores , Carbohidratos
8.
Int J Mol Sci ; 24(16)2023 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-37628892

RESUMEN

Xenotransplantation reemerged as a promising alternative to conventional transplantation enlarging the available organ pool. However, success of xenotransplantation depends on the design and selection of specific genetic modifications and on the development of robust assays allowing for a precise assessment of tissue-specific immune responses. Nevertheless, cell-based assays are often compromised by low proliferative capacity of primary cells. Proximal tubular epithelial cells (PTECs) play a crucial role in kidney function. Here, we generated immortalized PTECs (imPTECs) by overexpression of simian virus 40 T large antigen. ImPTECs not only showed typical morphology and phenotype, but, in contrast to primary PTECs, they maintained steady cell cycling rates and functionality. Furthermore, swine leukocyte antigen (SLA) class I and class II transcript levels were reduced by up to 85% after transduction with lentiviral vectors encoding for short hairpin RNAs targeting ß2-microglobulin and the class II transactivator. This contributed to reducing xenogeneic T-cell cytotoxicity (p < 0.01) and decreasing secretion of pro-inflammatory cytokines such as IL-6 and IFN-γ. This study showed the feasibility of generating highly proliferative PTECs and the development of tissue-specific immunomonitoring assays. Silencing SLA expression on PTECs was demonstrated to be an effective strategy to prevent xenogeneic cellular immune responses and may strongly support graft survival after xenotransplantation.


Asunto(s)
Bioensayo , Células Epiteliales , Animales , Porcinos , Regulación hacia Abajo , Inmunidad
9.
J Clin Invest ; 133(12)2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37159273

RESUMEN

BACKGROUNDAdoptive transfer of EBV-specific T cells can restore specific immunity in immunocompromised patients with EBV-associated complications.METHODSWe provide results of a personalized T cell manufacturing program evaluating donor, patient, T cell product, and outcome data. Patient-tailored clinical-grade EBV-specific cytotoxic T lymphocyte (EBV-CTL) products from stem cell donors (SCDs), related third-party donors (TPDs), or unrelated TPDs from the allogeneic T cell donor registry (alloCELL) at Hannover Medical School were manufactured by immunomagnetic selection using a CliniMACS Plus or Prodigy device and the EBV PepTivators EBNA-1 and Select. Consecutive manufacturing processes were evaluated, and patient outcome and side effects were retrieved by retrospective chart analysis.RESULTSForty clinical-grade EBV-CTL products from SCDs, related TPDs, or unrelated TPDs were generated for 37 patients with refractory EBV infections or EBV-associated malignancies with and without a history of transplantation, within 5 days (median) after donor identification. Thirty-four patients received 1-14 EBV-CTL products (fresh and cryopreserved). EBV-CTL transfer led to a complete response in 20 of 29 patients who were evaluated for clinical response. No infusion-related toxicity was reported. EBV-specific T cells in patients' blood were detectable in 16 of 18 monitored patients (89%) after transfer, and their presence correlated with clinical response.CONCLUSIONPersonalized clinical-grade manufacture of EBV-CTL products via immunomagnetic selection from SCDs, related TPDs, or unrelated TPDs in a timely manner is feasible. Overall, EBV-CTLs were clinically effective and well tolerated. Our data suggest EBV-CTL transfer as a promising therapeutic approach for immunocompromised patients with refractory EBV-associated diseases beyond HSCT, as well as patients with preexisting organ dysfunction.TRIAL REGISTRATIONNot applicable.FUNDINGThis study was funded in part by the German Research Foundation (DFG, 158989968/SFB 900), the Deutsche Kinderkrebsstiftung (DKS 2013.09), Wilhelm-Sander-Stiftung (reference 2015.097.1), Ellen-Schmidt-Program of Hannover Medical School, and German Federal Ministry of Education and Research (reference 01EO0802).


Asunto(s)
Infecciones por Virus de Epstein-Barr , Inmunoterapia Adoptiva , Humanos , Herpesvirus Humano 4 , Inmunoterapia Adoptiva/métodos , Estudios Retrospectivos , Linfocitos T Citotóxicos , Donante no Emparentado
10.
Front Immunol ; 14: 988947, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37090716

RESUMEN

Introduction: Aspergillus fumigatus (Asp) infections constitute a major cause of morbidity and mortality in patients following allogeneic hematopoietic stem cell transplantation (HSCT). In the context of insufficient host immunity, antifungal drugs show only limited efficacy. Faster and increased T-cell reconstitution correlated with a favorable outcome and a cell-based therapy approach strongly indicated successful clearance of fungal infections. Nevertheless, complex and cost- or time-intensive protocols hampered their implementation into clinical application. Methods: To facilitate the clinical-scale manufacturing process of Aspergillus fumigatus-specific T cells (ATCs) and to enable immediate (within 24 hours) and sustained (12 days later) treatment of patients with invasive aspergillosis (IA), we adapted and combined two complementary good manufacturing practice (GMP)-compliant approaches, i) the direct magnetic enrichment of Interferon-gamma (IFN-γ) secreting ATCs using the small-scale Cytokine Secretion Assay (CSA) and ii) a short-term in vitro T-cell culture expansion (STE), respectively. We further compared stimulation with two standardized and commercially available products: Asp-lysate and a pool of overlapping peptides derived from different Asp-proteins (PepMix). Results: For the fast CSA-based approach we detected IFN-γ+ ATCs after Asp-lysate- as well as PepMix-stimulation but with a significantly higher enrichment efficiency for stimulation with the Asp-lysate when compared to the PepMix. In contrast, the STE approach resulted in comparably high ATC expansion rates by using Asp-lysate or PepMix. Independent of the stimulus, predominantly CD4+ helper T cells with a central-memory phenotype were expanded while CD8+ T cells mainly showed an effector-memory phenotype. ATCs were highly functional and cytotoxic as determined by secretion of granzyme-B and IFN-γ. Discussion: For patients with IA, the immediate adoptive transfer of IFN-γ+ ATCs followed by the administration of short-term in vitro expanded ATCs from the same donor, might be a promising therapeutic option to improve the clinical outcome.


Asunto(s)
Aspergilosis , Linfocitos T CD8-positivos , Aspergillus fumigatus , Aspergilosis/terapia , Linfocitos T Colaboradores-Inductores , Inmunoterapia , Interferón gamma
11.
Front Immunol ; 14: 878953, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37033971

RESUMEN

Introduction: In immunocompromised patients, Epstein-Barr virus (EBV) infection or reactivation is associated with increased morbidity and mortality, including the development of B-cell lymphomas. The first-line treatment consists of reduction of immunosuppression and administration of rituximab (anti-CD20 antibody). Furthermore, the presence of EBV-specific T cells against latent EBV proteins is crucial for the control of EBV-associated diseases. Therefore, in addition to effective treatment strategies, appropriate monitoring of T cells of high-risk patients is of great importance for improving clinical outcome. In this study, we hypothesized that rituximab-mediated lysis of malignant EBV-infected B cells leads to the release and presentation of EBV-associated antigens and results in an augmentation of EBV-specific effector memory T-cell responses. Methods: EBV-infected B lymphoblastoid cell lines (B-LCLs) were used as a model for EBV-associated lymphomas, which are capable of expressing latency stage II and III EBV proteins present in all known EBV-positive malignant cells. Rituximab was administered to obtain cell lysates containing EBV antigens (ACEBV). Efficiency of cross-presentation of EBV-antigen by B-LCLs compared to cross-presentation by professional antigen presenting cells (APCs) such as dendritic cells (DCs) and B cells was investigated by in vitro T-cell immunoassays. Deep T-cell profiling of the tumor-reactive EBV-specific T cells in terms of activation, exhaustion, target cell killing, and cytokine profile was performed, assessing the expression of T-cell differentiation and activation markers as well as regulatory and cytotoxic molecules by interferon-γ (IFN-γ) EliSpot assay, multicolor flow cytometry, and multiplex analyses. Results: By inhibiting parts of the cross-presentation pathway, B-LCLs were shown to cross-present obtained exogenous ACEBV-derived antigens mainly through major histocompatibility complex (MHC) class I molecules. This mechanism is comparable to that for DCs and B cells and resulted in a strong EBV-specific CD8+ cytotoxic T-cell response. Stimulation with ACEBV-loaded APCs also led to the activation of CD4+ T helper cells, suggesting that longer peptide fragments are processed via the classical MHC class II pathway. In addition, B-LCLs were also found to be able to take up exogenous antigens from surrounding cells by endocytosis leading to induction of EBV-specific T-cell responses although to a much lesser extent than cross-presentation of ACEBV-derived antigens. Increased expression of activation markers CD25, CD71 and CD137 were detected on EBV-specific T cells stimulated with ACEBV-loaded APCs, which showed high proliferative and cytotoxic capacity as indicated by enhanced EBV-specific frequencies and increased secretion levels of cytotoxic effector molecules (e.g. IFN-γ, granzyme B, perforin, and granulysin). Expression of the regulatory proteins PD-1 and Tim-3 was induced but had no negative impact on effector T-cell functions. Conclusion: In this study, we showed for the first time that rituximab-mediated lysis of EBV-infected tumor cells can efficiently boost EBV-specific endogenous effector memory T-cell responses through cross-presentation of EBV-derived antigens. This promotes the restoration of antiviral cellular immunity and presents an efficient mechanism to improve the treatment of CD20+ EBV-associated malignancies. This effect is also conceivable for other therapeutic antibodies or even for therapeutically applied unmodified or genetically modified T cells, which lead to the release of tumor antigens after specific cell lysis.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Neoplasias , Humanos , Herpesvirus Humano 4 , Rituximab/farmacología , Rituximab/uso terapéutico , Inmunidad Celular , Antígenos , Tratamiento Basado en Trasplante de Células y Tejidos
12.
13.
Transplant Cell Ther ; 29(6): 391.e1-391.e7, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36934995

RESUMEN

Human adenovirus (HAdV) infection is a serious complication that can lead to significant morbidity and mortality, especially in immunocompromised pediatric patients undergoing allogeneic hematopoietic stem cell transplantation (HSCT). Control and elimination of HAdV requires the presence of the respective antiviral T cells, and adoptive transfer of virus-specific T cells has become an important new treatment option for patients refractory to antiviral treatment. Although the adenoviral capsid protein hexon is known to be a major immunodominant T cell target across HAdV species, up to 30% of HAdV-seropositive donors show no T cell responses to the overlapping peptide pool spanning the entire protein. Our group recently verified the capsid protein penton as a second immunodominant target in HAdV infection. Here we aimed to investigate the prevalence of both penton-specific and hexon-specific HAdV T cells and their impact in virus control after HSCT. We analyzed the prevalence and characteristics of HAdV-specific T cells in 33 consecutive pediatric patients with HAdV reactivation following allogeneic HSCT and correlated them with viral load analysis. Our study demonstrates that penton is an important immunodominant target antigen of HAdV reactivation/ infection after HSCT in most patients. We demonstrate that in the majority of patients, both penton- and hexon-specific T cells appear at similar time intervals after transplantation. Despite the prevalence for either hexon-specific or penton-specific T cells in individual patients, we were unable to attribute the predominance to specific HLA types or HAdV serotypes. The occurrence of HAdV-specific T cells was closely linked to viral control, arguing for immune monitoring strategies to tailor antiviral treatment and adoptive T cell therapy.


Asunto(s)
Infecciones por Adenovirus Humanos , Adenovirus Humanos , Trasplante de Células Madre Hematopoyéticas , Humanos , Niño , Proteínas de la Cápside , Linfocitos T , Adenoviridae , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Infecciones por Adenovirus Humanos/epidemiología , Infecciones por Adenovirus Humanos/etiología , Antivirales
14.
Cells ; 12(5)2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36899812

RESUMEN

Measure of drug-mediated immune reactions that are dependent on the patient's genotype determine individual medication protocols. Despite extensive clinical trials prior to the license of a specific drug, certain patient-specific immune reactions cannot be reliably predicted. The need for acknowledgement of the actual proteomic state for selected individuals under drug administration becomes obvious. The well-established association between certain HLA molecules and drugs or their metabolites has been analyzed in recent years, yet the polymorphic nature of HLA makes a broad prediction unfeasible. Dependent on the patient's genotype, carbamazepine (CBZ) hypersensitivities can cause diverse disease symptoms as maculopapular exanthema, drug reaction with eosinophilia and systemic symptoms or the more severe diseases Stevens-Johnson-Syndrome or toxic epidermal necrolysis. Not only the association between HLA-B*15:02 or HLA-A*31:01 but also between HLA-B*57:01 and CBZ administration could be demonstrated. This study aimed to illuminate the mechanism of HLA-B*57:01-mediated CBZ hypersensitivity by full proteome analysis. The main CBZ metabolite EPX introduced drastic proteomic alterations as the induction of inflammatory processes through the upstream kinase ERBB2 and the upregulation of NFκB and JAK/STAT pathway implying a pro-apoptotic, pro-necrotic shift in the cellular response. Anti-inflammatory pathways and associated effector proteins were downregulated. This disequilibrium of pro- and anti-inflammatory processes clearly explain fatal immune reactions following CBZ administration.


Asunto(s)
Hipersensibilidad a las Drogas , Síndrome de Stevens-Johnson , Humanos , Quinasas Janus , Anticonvulsivantes/uso terapéutico , Regulación hacia Arriba , Proteómica , Factores de Transcripción STAT/genética , Transducción de Señal , Carbamazepina , Antígenos HLA-B/genética , Síndrome de Stevens-Johnson/etiología , Síndrome de Stevens-Johnson/genética , FN-kappa B/genética
15.
Artif Organs ; 47(7): 1151-1162, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36740583

RESUMEN

BACKGROUND: Immune cell dysfunction is a central part of immune paralysis in sepsis. Granulocyte concentrate (GC) transfusions can induce tissue damage via local effects of neutrophils. The hypothesis of an extracorporeal plasma treatment with granulocytes is to show beneficial effects with fewer side effects. Clinical trials with standard GC have supported this approach. This ex vivo study investigated the functional properties of purified granulocyte preparations during the extracorporeal plasma treatment. METHODS: Purified GC were stored for up to 3 days and compared with standard GC in an immune cell perfusion therapy model. The therapy consists of a plasma separation device and an extracorporeal circuit. Plasma is perfused through the tubing system with donor immune cells of the GC, and only the treated plasma is filtered for re-transfusion. The donor immune cells are retained in the extracorporeal system and discarded after treatment. Efficacy of granulocytes regarding phagocytosis, oxidative burst as well as cell viability and metabolic parameters were assessed. RESULTS: In pGC, the metabolic surrogate parameters of cell functionality showed comparable courses even after a storage period of 72 h. In particular, glucose and oxygen consumption were lower after extended storage. The course of lactate dehydrogenase concentration yields no indication of cell impairment in the extracorporeal circulation. The cells were viable throughout the entire study period and exhibited preserved phagocytosis and oxidative burst functionality. CONCLUSION: The granulocytes demonstrated full functionality in the 6 h extracorporeal circuits after 3 days storage and in septic shock plasma. This is demonstrating the functionality of the system and encourages further clinical studies.


Asunto(s)
Sepsis , Choque Séptico , Humanos , Granulocitos/metabolismo , Neutrófilos , Sepsis/terapia , Transfusión Sanguínea , Circulación Extracorporea
16.
Front Transplant ; 2: 1183908, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38993849

RESUMEN

Normothermic ex-vivo machine perfusion provides a powerful tool to improve donor kidney preservation and a route for the delivery of pharmacological or gene therapeutic interventions prior to transplantation. However, perfusion at normothermic temperatures requires adequate tissue oxygenation to meet the physiological metabolic demand. For this purpose, the addition of appropriate oxygen carriers (OCs) to the perfusion solution is essential to ensure a sufficient oxygen supply and reduce the risk for tissue injury due to hypoxia. It is crucial that the selected OCs preserve the integrity and low immunogenicity of the graft. In this study, the effect of two OCs on the organ's integrity and immunogenicity was evaluated. Porcine kidneys were perfused ex-vivo for four hours using perfusion solutions supplemented with red blood cells (RBCs) as conventional OC, perfluorocarbon (PFC)-based OC, or Hemarina-M101 (M101), a lugworm hemoglobin-based OC named HEMO2life®, recently approved in Europe (i.e., CE obtained in October 2022). Perfusions with all OCs led to decreased lactate levels. Additionally, none of the OCs negatively affected renal morphology as determined by histological analyses. Remarkably, all OCs improved the perfusion solution by reducing the expression of pro-inflammatory mediators (IL-6, IL-8, TNFα) and adhesion molecules (ICAM-1) on both transcript and protein level, suggesting a beneficial effect of the OCs in maintaining the low immunogenicity of the graft. Thus, PFC-based OCs and M101 may constitute a promising alternative to RBCs during normothermic ex-vivo kidney perfusion.

17.
PLoS One ; 17(11): e0276929, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36322587

RESUMEN

Mortality due to COVID-19 is not increased in immunosuppressed individuals after liver transplantation (OLT) compared to individuals without immunosuppression. Data on long-term protective immunity against SARS-CoV-2 in immunosuppressed convalescents, is limited. We prospectively measured immune responses against SARS-CoV-2 by quantifying antibodies against 4 different antigens (spike protein 1 and 2, receptor binding domain, nucleocapsid) and T cell responses by IFN-γ ELISPOT against 4 antigens (membrane, nucleocapsid, spike protein 1 and 2) in 24 OLT convalescents with immunosuppressive therapy longitudinally in the first year after COVID-19 including a booster vaccination in comparison to a matched cohort of non-immunosuppressed convalescents (non-IS-Con). Pre-pandemic OLT samples were retrieved from our prospective OLT biorepository (n = 16). No relevant T cell reactivity or immunoglobulin G (IgG) against SARS-CoV-2 were detectable in pre-pandemic samples of OLT recipients despite reactivity against endemic corona-viruses. OLT convalescents had a lower prevalence of IgG against nucleocapsid (54% vs. 90%) but not against spike protein domains (98-100% vs. 100%) after vaccination in the second half-year after COVID-19 compared to non-IS-Con. Also, concentrations of anti-nucleocapsid IgG were lower in OLT convalescents than in non-IS-Con. Concentration of IgG against spike protein domains was significantly increased by a booster vaccination in OLT convalescents. But concentration of IgG against two of three spike protein domains remains slightly lower compared to non-IS-Con finally. However, none of these differences was mirrored by the cellular immunity against SARS-CoV-2 that remained stable during the first year after COVID-19 and was not further stimulated by a corona vaccination in OLT convalescents. In conclusion, despite lower concentrations of anti-SARS-CoV-2 IgG in OLT convalescents anti-SARS-CoV-2 cellular immunity was as robust as in non-IS-Con.


Asunto(s)
COVID-19 , Trasplante de Hígado , Humanos , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Estudios Prospectivos , Anticuerpos Antivirales , Inmunoglobulina G , Inmunidad Celular , Inmunidad Humoral , Vacunación , Receptores de Trasplantes
18.
J Clin Invest ; 132(24)2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-36326824

RESUMEN

BACKGROUNDResults of many randomized trials on COVID-19 convalescent plasma (CCP) have been reported, but information on long-term outcome after CCP treatment is limited. The objectives of this extended observation of the randomized CAPSID trial are to assess long-term outcome and disease burden in patients initially treated with or without CCP.METHODSOf 105 randomized patients, 50 participated in the extended observation. Quality of life (QoL) was assessed by questionnaires and a structured interview. CCP donors (n = 113) with asymptomatic to moderate COVID-19 were included as a reference group.RESULTSThe median follow-up of patients was 396 days, and the estimated 1-year survival was 78.7% in the CCP group and 60.2% in the control (P = 0.08). The subgroup treated with a higher cumulative amount of neutralizing antibodies showed a better 1-year survival compared with the control group (91.5% versus 60.2%, P = 0.01). Medical events and QoL assessments showed a consistent trend for better results in the CCP group without reaching statistical significance. There was no difference in the increase in neutralizing antibodies after vaccination between the CCP and control groups.CONCLUSIONThe trial demonstrated a trend toward better outcome in the CCP group without reaching statistical significance. A predefined subgroup analysis showed a significantly better outcome (long-term survival, time to discharge from ICU, and time to hospital discharge) among those who received a higher amount of neutralizing antibodies compared with the control group. A substantial long-term disease burden remains after severe COVID-19.Trial registrationEudraCT 2020-001310-38 and ClinicalTrials.gov NCT04433910.FundingBundesministerium für Gesundheit (German Federal Ministry of Health).


Asunto(s)
COVID-19 , Humanos , COVID-19/terapia , COVID-19/etiología , SARS-CoV-2 , Calidad de Vida , Cápside , Estudios de Seguimiento , Inmunización Pasiva/efectos adversos , Anticuerpos Neutralizantes , Anticuerpos Antivirales
19.
Front Immunol ; 13: 1027122, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36405747

RESUMEN

The ongoing Coronavirus Disease 2019 (COVID-19) pandemic is caused by the highly infectious Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2). There is an urgent need for biomarkers that will help in better stratification of patients and contribute to personalized treatments. We performed targeted proteomics using the Olink platform and systematically investigated protein concentrations in 350 hospitalized COVID-19 patients, 186 post-COVID-19 individuals, and 61 healthy individuals from 3 independent cohorts. Results revealed a signature of acute SARS-CoV-2 infection, which is represented by inflammatory biomarkers, chemokines and complement-related factors. Furthermore, the circulating proteome is still significantly affected in post-COVID-19 samples several weeks after infection. Post-COVID-19 individuals are characterized by upregulation of mediators of the tumor necrosis (TNF)-α signaling pathways and proteins related to transforming growth factor (TGF)-ß. In addition, the circulating proteome is able to differentiate between patients with different COVID-19 disease severities, and is associated with the time after infection. These results provide important insights into changes induced by SARS-CoV-2 infection at the proteomic level by integrating several cohorts to obtain a large disease spectrum, including variation in disease severity and time after infection. These findings could guide the development of host-directed therapy in COVID-19.


Asunto(s)
COVID-19 , Proteómica , Humanos , Proteoma , SARS-CoV-2 , Biomarcadores
20.
Biol Chem ; 403(11-12): 1091-1098, 2022 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-36054292

RESUMEN

Transfusion effectiveness of red blood cells (RBCs) has been associated with duration of the storage period. Storage-dependent RBC alterations lead to hemolysis and release of toxic free heme, but the increase of free heme levels over time is largely unknown. In the current study, an apo-horseradish peroxidase (apoHRP)-based assay was applied to measure levels of free heme at regular intervals or periodically in supernatants of RBCs until a maximum storage period of 42 days. Free heme levels increased with linear time-dependent kinetics up to day 21 and accelerated disproportionally after day 28 until day 42, as determined with the apoHRP assay. Individual time courses of free heme in different RBC units exhibited high variability. Notably, levels of free hemoglobin, an established indicator of RBC damage, and those of total heme increased with continuous time-dependent linear kinetics over the entire 42 day storage period, respectively. Supernatants from RBC units with high levels of free heme led to inflammatory activation of human neutrophils. In conclusion, determining free heme in stored RBCs with the applied apoHRP assay may become feasible for testing of RBC storage quality in clinical transfusion medicine.


Asunto(s)
Conservación de la Sangre , Hemo , Humanos , Peroxidasa de Rábano Silvestre , Eritrocitos , Hemólisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA