Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
Chem Biol Interact ; 361: 109949, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35490797

RESUMEN

Reactions of the epoxides of 1,3-butadiene and isoprene (2-methyl-1,3-butadiene) with oxygen, nitrogen and sulfur nucleophiles have been compared to enable a better molecular understanding of the relative human toxicities of these epoxides. Hydrolysis of rac.-ethenyloxirane in (18O)water gave 77% (2-18O)but-3-ene-1,2-diol and 23% (1-18O)but-3-ene-1,2-diol. The R:S ratio for but-3-ene-1,2-diol from hydrolysis of (S)-ethenyloxirane was 75:25. Hence, hydrolysis of ethenyloxirane occurs by competing SN2 attack at C-2 and C-3 in 3:1 ratio, with no SN1 component. Hydrolysis of rac.-2-ethenyl-2-methyloxirane gave 2-hydroxy-2-methylbut-3-en-1-ol (73%) and 27% of a 2:1 mixture of the E- and Z-isomers of 4-hydroxy-2-methylbut-2-en-1-ol. In (18O)water (2-18O)2-hydroxy-2-methylbut-3-en-1-ol was obtained. Formation of these products occurs via SN1 ionisation to resonance-stabilised allylic cations which are captured by water. Reaction of rac.-ethenyloxirane with l-valine methyl ester gave diastereoisomeric adducts from SN2 attack of the valine amino at both C-2 (substituted position) and C-3 of the oxirane. The corresponding reaction of rac.-2-methyl-2-ethenyloxirane gave diastereoisomeric adducts, (R, S)- and (S, S)-N-(2-hydroxy-2-methyl-3-buten-1-yl)-l-valine methyl ester, from SN2 attack of the valine amino solely at C-3. Reactions of rac.-2-ethenyl-2-methyloxirane with cysteine derivatives occurred at C-2 in neutral polar media (SN1 reaction) or at C-3 in basic media (SN2), whereas for ethenyloxirane products arose from attack at both C-2 and C-3. Reaction of meso-butadiene diepoxide (meso-2,2'-bioxirane) with l-valine methyl ester gave mainly 2:1 adducts, dimethyl 2,2'-(((2R,3S)-2,3-dihydroxybutane-1,4-diyl)bis(azanediyl))-(2S,2'S)-bis(3-methyl-butanoates), whereas 2-methyl-2,2'-bioxirane gave a mixture of 1:1 [methyl 2-(3,4-dihydroxy-3-methylpyrrolidin-1-yl)-3-methylbutanoates] and 2:1 adducts. Meso-2,2'-bioxirane reacted with N-acetylcysteine methyl ester in methanol to afford meso-thiolane-3,4-diol, by elimination of N-acetyldehydroalanine methyl ester from a precursor cyclic adduct. Similarly, 2-methyl-2,2'-bioxirane gave solely 3-methylthiolane-3,4-diols. Thus, the methyl group of isoprene has a subtle effect on the reactivity of its epoxides relative to those of butadiene and therefore, in the context of their toxicology, could abrogate crosslinking of nitrogen functions in biomolecules related to mutagenicity and carcinogenicity.


Asunto(s)
Butadienos , Compuestos Epoxi , Alquilantes , Hemiterpenos , Humanos , Nitrógeno , Valina , Agua
2.
Chem Biol Interact ; 184(1-2): 196-200, 2010 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-20064493

RESUMEN

One or more of the muconaldehyde isomers is a putative product of benzene metabolism. As muconaldehydes are highly reactive dienals and potentially mutagenic they might be relevant to the carcinogenicity of benzene. Muconaldehydes may be derived through the action of a cytochrome P450 mono-oxygenase on benzene oxide-oxepin, which are established metabolites of benzene. Oxidation of benzene oxide-oxepin either by the one-electron oxidant cerium(IV) ammonium nitrate (CAN) or by iron(III) tris(1,10-phenanthroline) hexafluorophosphate in acetone at -78 degrees C or acetonitrile at -40 degrees C gave (E,Z)-muconaldehyde, which was a single diastereoisomer according to analysis by (1)H NMR spectroscopy. Reaction of toluene-1,2-oxide/2-methyloxepin with CAN gave (2E,4Z)-6-oxo-hepta-2,4-dienal. Similarly, the action of CAN on 1,6-dimethylbenzene oxide-2,7-dimethyloxepin gave (3Z,5E)-octa-3,5-diene-2,7-dione. In vivo, benzene oxide-oxepin could suffer one-electron oxidation by cytochrome P450 mono-oxygenase giving (E,Z)-muconaldehyde. The observations presented may be relevant to the toxicology of benzene oxide-oxepin and other arene oxide-oxepins as we have previously shown that (E,Z)-muconaldehyde, analogously to (Z,Z)-muconaldehyde, affords pyrrole adducts with the exocyclic amino groups of the DNA bases adenine and guanine. Independent of their possible toxicological significance, the experiments described provide preparatively useful routes to (E,Z)-muconaldehyde and its congeners. Methods are also described for the trapping and analysis of reactive benzene metabolites, e.g. using the Diels-Alder reaction with the dienophile 4-phenyl-1,2,4-triazoline-3,5-dione to trap arene oxides and with the diene 1,3-diphenylisobenzofuran to trap enals.


Asunto(s)
Benceno/metabolismo , Aldehídos/metabolismo , Ciclohexanos/metabolismo , Modelos Biológicos , Oxepinas/metabolismo , Oxidación-Reducción
3.
Bioorg Chem ; 33(5): 363-73, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16005934

RESUMEN

Glutathione induces the rapid isomerization of (Z,Z)-muconaldehyde to (E,E)-muconaldehyde via (E,Z)-muconaldehyde, probably via reversible Michael addition of the thiol to one of the enal moieties of the muconaldehyde. Reactions of (E,E)-muconaldehyde with glutathione (in the presence and absence of equine glutathione S-transferase), phenylmethanethiol, N-acetyl-l-cysteine, and N-acetyl-l-cysteine methyl ester were investigated using mass spectrometric techniques. In each case, evidence was obtained for the formation of Michael adducts, e.g., reaction between (E,E)-muconaldehyde and glutathione gave 4-glutathionyl-hex-2-enedial and 3,4-bis-glutathionyl-hexanedial. These experiments suggest that (Z,Z)-muconaldehyde, a putative metabolite of benzene, could lead to the long established urinary metabolite of benzene, (E,E)-muconic acid, via glutathione-mediated isomerization to (E,E)-muconaldehyde.


Asunto(s)
Aldehídos/química , Glutatión/química , Compuestos de Sulfhidrilo/química , Glutatión Transferasa , Indicadores y Reactivos , Isomerismo , Cinética , Espectrometría de Masas
4.
Chem Res Toxicol ; 18(2): 265-70, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15720131

RESUMEN

S-Phenylmercapturic acid is a minor metabolite of benzene used as a biomarker for human benzene exposures. The reaction of intracellular glutathione with benzene oxide-oxepin, the initial metabolite of benzene, is presumed to give 1-(S-glutathionyl)-cyclohexa-3,5-dien-2-ol, which undergoes dehydration to S-phenylglutathione, the precursor of S-phenylmercapturic acid. To validate the proposed route to S-phenylglutathione, reactions of benzene oxide-oxepin with glutathione and other sulfur nucleophiles have been studied. The reaction of benzene oxide with an excess of aqueous sodium sulfide, followed by acetylation, gave bis-(6-trans-5-acetoxycyclohexa-1,3-dienyl)sulfide, the structure of which was proved by X-ray crystallography. Reactions of benzene oxide-oxepin in a 95:5 (v/v) mixture of phosphate buffer in D2O with (CD3)2SO were monitored by 1H NMR spectroscopy. In the absence of glutathione, the half-life of benzene oxide-oxepin was ca. 34 min at 25 degrees C and pD 7.0. The half-life was not affected in the range of 2-15 mM glutathione in the presence and absence of a commercial sample of human glutathione S-transferase (at pH 7.0, 8.0, 8.5, or 10.0). The adduct 1-(S-glutathionyl)-cyclohexa-3,5-diene-2-ol was identified in these reaction mixtures, especially at higher pH, by mass spectrometry and by its acid-catalyzed decomposition to S-phenylglutathione. Incubation of benzene oxide with N-acetyl-L-cysteine at 37 degrees C and pH 10.0 and subsequent mass spectrometric analysis of the mixture showed formation of pre-S-phenylmercapturic acid and the dehydration product, S-phenylmercapturic acid. The data validate the premise that benzene oxide-oxepin can be captured by glutathione to give (1R,2R)- and/or (1S,2S)-1-(S-glutathionyl)-cyclohexa-3,5-dien-2-ol, which dehydrate to S-phenylglutathione. The capture is a relatively inefficient process at pH 7 that is accelerated at higher pH. These studies account for the observation that the metabolism of benzene is dominated by the formation of phenol. The pathway leading to S-phenylmercapturic acid is necessarily minor on account of the low efficiency of benzene oxide capture by glutathione at pH 7 vs spontaneous rearrangement to phenol.


Asunto(s)
Ciclohexanos/síntesis química , Glutatión/química , Compuestos de Sulfhidrilo/síntesis química , Ciclohexanos/química , Humanos , Modelos Moleculares , Conformación Molecular , Compuestos de Sulfhidrilo/química
5.
Chem Res Toxicol ; 17(3): 378-82, 2004 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15025508

RESUMEN

Glutaraldehyde reacts with weakly nucleophilic anilines, e.g., 3-fluoro-4-nitroaniline, which are models for amino groups in DNA, to give meso-2,6-disubstituted tetrahydropyrans, e.g., meso-2,6-di-(3-fluoro-4-nitroanilino)tetrahydropyran, that were characterized spectroscopically and by X-ray crystal structure analysis. This contrasts with the outcome of reactions with more strongly nucleophilic amines, which give rise to N-substituted 1,4-dihydropyridines. The mechanism of formation of the tetrahydropyrans is proposed to involve initial attack of the amine on one of the aldehyde groups of glutaraldehyde to give a carbinolamine intermediate. The ensuing cyclization to a tetrahydropyran, rather than dehydration to an imine leading to a dihydropyridine, is explained as a result of a competition between the lone pair of the amino function of the carbinolamine and the two lone pairs of the hydroxyl group. The formation of the tetrahydropyran is more likely with an amino function of low nucleophilicity, whereas dehydration to an imine leading to a dihydropyridine is favored with an amino function of higher nucleophilicity. The formation of tetrahydropyrans may be relevant to the toxicology of glutaraldehyde by providing a mechanistic basis for DNA adduction or DNA-protein cross-linking.


Asunto(s)
Compuestos de Anilina/química , Glutaral/química , Piranos/química , Reactivos de Enlaces Cruzados/química , Modelos Químicos , Piridinas/química
6.
Chem Commun (Camb) ; (17): 1956-7, 2002 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-12271692

RESUMEN

4-Phenyl-1,2,4-triazoline-3,5-dione and its pentafluoro analogue are efficient reagents for trapping arene oxides, e.g. benzene oxide-oxepin, affording crystalline adducts that can be quantitatively analysed by HPLC and MS techniques.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA