Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
J Am Chem Soc ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38953716

RESUMEN

Oscillations in the chemical or physical properties of materials, composed of an odd or even number of connected repeating methylene units, are a well-known phenomenon in organic chemistry and materials science. So far, such behavior has not been reported for the important class of materials, perovskite semiconductors. This work reports a distinct odd-even oscillation of the molecular structure and charge carrier transport properties of phenylalkylammonium two-dimensional (2D) Sn-based perovskites in which the alkyl chains in the phenylalkylammonium cations contain varying odd and even carbon numbers. Density functional theory calculations and grazing-incidence wide-angle X-ray scattering characterization reveal that perovskites with organic ligands containing an alkyl chain with an odd number of carbon atoms display a disordered crystal lattice and tilted inorganic octahedra accompanied by reduced mobilities. In contrast, perovskites with cations of an even number of carbon atoms in the alkyl chain form more ordered crystal structures, resulting in improved charge carrier mobilities. Our findings disclose the importance of minor changes in the molecular conformation of organic cations have an effect on morphology, photophysical properties, and charge carrier transport of 2D layered perovskites, showcasing alkyl chain engineering of organic cations to control key properties, of layered perovskite semiconductors.

2.
Nat Commun ; 15(1): 5350, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38914568

RESUMEN

Organic artificial neurons operating in liquid environments are crucial components in neuromorphic bioelectronics. However, the current understanding of these neurons is limited, hindering their rational design and development for realistic neuronal emulation in biological settings. Here we combine experiments, numerical non-linear simulations, and analytical tools to unravel the operation of organic artificial neurons. This comprehensive approach elucidates a broad spectrum of biorealistic behaviors, including firing properties, excitability, wetware operation, and biohybrid integration. The non-linear simulations are grounded in a physics-based framework, accounting for ion type and ion concentration in the electrolytic medium, organic mixed ionic-electronic parameters, and biomembrane features. The derived analytical expressions link the neurons spiking features with material and physical parameters, bridging closer the domains of artificial neurons and neuroscience. This work provides streamlined and transferable guidelines for the design, development, engineering, and optimization of organic artificial neurons, advancing next generation neuronal networks, neuromorphic electronics, and bioelectronics.


Asunto(s)
Electrónica , Modelos Neurológicos , Neuronas , Neuronas/fisiología , Electrónica/instrumentación , Potenciales de Acción/fisiología , Redes Neurales de la Computación
3.
Adv Mater ; : e2404054, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38925104

RESUMEN

Particle size is a critical factor for improving photocatalytic reactivity of conjugated microporous polymers (CMPs) as mass transfer in the porous materials is often the rate-limiting step. However, due to the synthetic challenge of controlling the size of CMPs, the impact of particle size is yet to be investigated. To address this problem, a simple and versatile dispersion polymerization route that can synthesize dispersible CMP nanoparticles with controlled size from 15 to 180 nm is proposed. Leveraging the precise control of the size, it is demonstrated that smaller CMP nanoparticles have dramatically higher photocatalytic reactivity in various organic transformations, achieving more than 1000% enhancement in the reaction rates by decreasing the size from 180 to 15 nm. The size-dependent photocatalytic reactivity is further scrutinized using a kinetic model and transient absorption spectroscopy, revealing that only the initial 5 nm-thick surface layer of CMP nanoparticles is involved in the photocatalytic reactions because of internal mass transfer limitations. This finding substantiates the potential of small CMP nanoparticles to efficiently use photo-generated excitons and improve energy-efficiency of numerous photocatalytic reactions.

4.
Nat Commun ; 15(1): 4107, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750042

RESUMEN

Many wide-gap organic semiconductors exhibit imbalanced electron and hole transport, therefore efficient organic light-emitting diodes require a multilayer architecture of electron- and hole-transport materials to confine charge recombination to the emissive layer. Here, we show that even for emitters with imbalanced charge transport, it is possible to obtain highly efficient single-layer organic light emitting diodes (OLEDs), without the need for additional charge-transport and blocking layers. For hole-dominated emitters, an inverted single-layer device architecture with ohmic bottom-electron and top-hole contacts moves the emission zone away from the metal top electrode, thereby more than doubling the optical outcoupling efficiency. Finally, a blue-emitting inverted single-layer OLED based on thermally activated delayed fluorescence is achieved, exhibiting a high external quantum efficiency of 19% with little roll-off at high brightness, demonstrating that balanced charge transport is not a prerequisite for highly efficient single-layer OLEDs.

5.
Sci Technol Adv Mater ; 25(1): 2312148, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38361531

RESUMEN

Already in 2012, Blom et al. reported (Nature Materials 2012, 11, 882) in semiconducting polymers on a general electron-trap density of ≈3 × 1017 cm-3, centered at an energy of ≈3.6 eV below vacuum. It was suggested that traps have an extrinsic origin, with the water-oxygen complex [2(H2O)-O2] as a possible candidate, based on its electron affinity. However, further evidence is lacking and the origin of universal electron traps remained elusive. Here, in polymer diodes, the temperature-dependence of reversible electron traps is investigated that develop under bias stress slowly over minutes to a density of 2 × 1017 cm-3, centered at an energy of 3.6 eV below vacuum. The trap build-up dynamics follows a 3rd-order kinetics, in line with that traps form via an encounter between three diffusing precursor particles. The accordance between universal and slowly evolving traps suggests that general electron traps in semiconducting polymers form via a triple-encounter process between oxygen and water molecules that form the suggested [2(H2O)-O2] complex as the trap origin.


Formation of universal electron traps in polymer light-emitting diodes is a dynamic process that occurs via a slow triple-encounter between trap precursor species, with the water-oxygen [2(H2O)-O2] complex as a likely candidate.

6.
J Phys Chem B ; 128(7): 1760-1770, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38340068

RESUMEN

We report the photophysical properties of a molecular folda-dimer system PDI-AnEt2-PDI, where the electron-donating N,N-diethylaniline (AnEt2) moiety bridges two electron-accepting perylene diimide (PDI) chromophores. The conformationally flexible PDI-AnEt2-PDI adopts either an open (two PDIs far apart) or folded (two PDIs within π-stacking distance) conformation, depending on the solvent environment. We characterized the photoinduced charge separation dynamics of both open and folded forms in solvents of varying polarity. The open form undergoes charge separation to give PDI•--AnEt2•+-PDI (Bridge electron transfer) independent of solvent polarity. The folded form exhibits two charge separation photoproducts, yielding both PDI•--AnEt2•+-PDI and PDI•--AnEt2-PDI•+, the latter of which is formed via symmetry-breaking charge separation (SBCS) between the two π-stacked PDI chromophores. Our results further indicate that the conformational flexibility of the folda-dimer leads to unexpected excimer formation in some open form conditions. In contrast, no excimer formation is observed in the folded form, indicating that this geometry preferentially yields the SBCS instead. Our results provide insight into how conformationally flexible folda-dimer systems can be designed and built to tune competitive photophysical pathways.

7.
Mater Horiz ; 11(5): 1177-1187, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38323649

RESUMEN

Two-dimensional (2D) tin halide perovskites are promising semiconductors for field-effect transistors (FETs) owing to their fascinating electronic properties. However, the correlation between the chemical nature of organic cations and charge carrier transport is still far from understanding. In this study, the influence of chain length of linear alkyl ammonium cations on film morphology, crystallinity, and charge transport in 2D tin halide perovskites is investigated. The carbon chain lengths of the organic spacers vary from propylammonium to heptanammonium. The increase of alkyl chain length leads to enhanced local charge carrier transport in the perovskite film with mobilities of up to 8 cm2 V-1 s-1, as confirmed by optical-pump terahertz spectroscopy. A similar improved macroscopic charge transport is also observed in FETs, only to the chain length of HA, due to the synergistic enhancement of film morphology and molecular organization. While the mobility increases with the temperature rise from 100 K to 200 K due to the thermally activated transport mechanism, the device performance decreases in the temperature range of 200 K to 295 K because of ion migration. These results provide guidelines on rational design principles of organic spacer cations for 2D tin halide perovskites and contribute to other optoelectronic applications.

8.
Adv Mater ; 36(16): e2311892, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38214416

RESUMEN

Organic light-emitting diodes (OLEDs) employing a single active layer potentially offer a number of benefits compared to multilayer devices; reduced number of materials and deposition steps, potential for solution processing, and reduced operating voltage due to the absence of heterojunctions. However, for single-layer OLEDs to achieve efficiencies approaching those of multilayer devices, balanced charge transport is a prerequisite. This requirement excludes many efficient emitters based on thermally activated delayed fluorescence (TADF) that exhibit electron trapping, such as the green-emitting bis(4-(9,9-dimethylacridin-10(9H)-yl)phenyl)methanone (DMAC-BP). By employing a recently developed trap-free large band gap material as a host for DMAC-BP, nearly balanced charge transport is achieved. The single-layer OLED reaches an external quantum efficiency (EQE) of 19.6%, which is comparable to the reported EQEs of 18.9-21% for multilayer devices, but achieves a record power efficiency for DMAC-BP OLEDs of 82 lm W-1, clearly surpassing the reported multilayer power efficiencies of 52.9-59 lm W-1. In addition, the operational stability is greatly improved compared to multilayer devices and the use of conventional host materials in combination with DMAC-BP as an emitter. Next to the obvious reduction in production costs, single-layer OLEDs therefore also offer the advantage of reduced energy consumption and enhanced stability.

9.
Adv Mater ; 35(49): e2304728, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37586746

RESUMEN

Highly efficient organic light-emitting diodes (OLEDs) based on thermally activated delayed fluorescence (TADF) emitters are realized in recent years, but the device lifetime needs further improvement for practical display or lighting applications. In this work, a device design principle is presented by tuning the optical cavity of single-layer undoped devices, to realize efficient and long-lived TADF OLEDs. Extending the cavity length to the second-order interference maximum by increasing the emissive layer thickness broadens the recombination zone, while the optical outcoupling efficiency remains close to that of the thinner first-order devices. Such a device design leads to efficient and stable single-layer undoped OLEDs with a maximum external quantum efficiency of 16%, an LT90 of 452 h, and an LT50 of 3693 h at an initial luminance of 1000 cd m-2 , which is doubled compared to the first-order counterparts. It is further demonstrated that the widely-used empirical relation between OLED lifetime and light intensity originates from triplet-polaron annihilation, resulting in an extrapolated LT50 at 100 cd m-2 of close to 90 000 h, approaching the demands for practical backlight applications.

10.
Nat Mater ; 22(9): 1114-1120, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37386064

RESUMEN

A common obstacle of many organic semiconductors is that they show highly unipolar charge transport. This unipolarity is caused by trapping of either electrons or holes by extrinsic impurities, such as water or oxygen. For devices that benefit from balanced transport, such as organic light-emitting diodes, organic solar cells and organic ambipolar transistors, the energy levels of the organic semiconductors are ideally situated within an energetic window with a width of 2.5 eV where charge trapping is strongly suppressed. However, for semiconductors with a band gap larger than this window, as used in blue-emitting organic light-emitting diodes, the removal or disabling of charge traps poses a longstanding challenge. Here we demonstrate a molecular strategy where the highest occupied molecular orbital and lowest unoccupied molecular orbital are spatially separated on different parts of the molecules. By tuning their stacking by modification of the chemical structure, the lowest unoccupied molecular orbitals can be spatially protected from impurities that cause electron trapping, increasing the electron current by orders of magnitude. In this way, the trap-free window can be substantially broadened, opening a path towards large band gap organic semiconductors with balanced and trap-free transport.

11.
Angew Chem Int Ed Engl ; 62(35): e202305737, 2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37335764

RESUMEN

The incorporation of nanopores into graphene nanostructures has been demonstrated as an efficient tool in tuning their band gaps and electronic structures. However, precisely embedding the uniform nanopores into graphene nanoribbons (GNRs) at the atomic level remains underdeveloped especially for in-solution synthesis due to the lack of efficient synthetic strategies. Herein we report the first case of solution-synthesized porous GNR (pGNR) with a fully conjugated backbone via the efficient Scholl reaction of tailor-made polyphenylene precursor (P1) bearing pre-installed hexagonal nanopores. The resultant pGNR features periodic subnanometer pores with a uniform diameter of 0.6 nm and an adjacent-pores-distance of 1.7 nm. To solidify our design strategy, two porous model compounds (1 a, 1 b) containing the same pore size as the shortcuts of pGNR, are successfully synthesized. The chemical structure and photophysical properties of pGNR are investigated by various spectroscopic analyses. Notably, the embedded periodic nanopores largely reduce the π-conjugation degree and alleviate the inter-ribbon π-π interactions, compared to the nonporous GNRs with similar widths, affording pGNR with a notably enlarged band gap and enhanced liquid-phase processability.

12.
Adv Mater ; 35(26): e2300574, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36914566

RESUMEN

Efficient organic light-emitting diodes (OLEDs) commonly comprise a multilayer stack including charge-transport and charge- and exciton-blocking layers, to confine charge recombination to the emissive layer. Here, a highly simplified single-layer blue-emitting OLED is demonstrated based on thermally activated delayed fluorescence with the emitting layer simply sandwiched between ohmic contacts consisting of a polymeric conducting anode and a metal cathode. The single-layer OLED exhibits an external quantum efficiency of 27.7% with minor roll-off at high brightness. The internal quantum efficiency approaches unity, demonstrating that highly simplified single-layer OLEDs without confinement layers can achieve state-of-the-art performance, while greatly reducing the complexity of the design, fabrication, and device analysis.

13.
Small ; 19(23): e2207426, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36908090

RESUMEN

Understanding and controlling the nucleation and crystallization in solution-processed perovskite thin films are critical to achieving high in-plane charge carrier transport in field-effect transistors (FETs). This work demonstrates a simple and effective additive engineering strategy using pentanoic acid (PA). Here, PA is introduced to both modulate the crystallization process and improve the charge carrier transport in 2D 2-thiopheneethylammonium tin iodide ((TEA)2 SnI4 ) perovskite FETs. It is revealed that the carboxylic group of PA is strongly coordinated to the spacer cation TEAI and [SnI6 ]4- framework in the perovskite precursor solution, inducing heterogeneous nucleation and lowering undesired oxidation of Sn2+ during the film formation. These factors contribute to a reduced defect density and improved film morphology, including lower surface roughness and larger grain size, resulting in overall enhanced transistor performance. The reduced defect density and decreased ion migration lead to a higher p-channel charge carrier mobility of 0.7 cm2 V-1 s-1 , which is more than a threefold increase compared with the control device. Temperature-dependent charge transport studies demonstrate a mobility of 2.3 cm2 V-1 s-1 at 100 K due to the diminished ion mobility at low temperatures. This result illustrates that the additive strategy bears great potential to realize high-performance Sn-based perovskite FETs.

14.
Sci Rep ; 13(1): 4717, 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36949087

RESUMEN

Bimolecular charge recombination is one of the most important loss processes in organic solar cells. However, the bimolecular recombination rate in solar cells based on novel non-fullerene acceptors is mostly unclear. Moreover, the origin of the reduced-Langevin recombination rate in bulk heterojunction solar cells in general is still poorly understood. Here, we investigate the bimolecular recombination rate and charge transport in a series of high-performance organic solar cells based on non-fullerene acceptors. From steady-state dark injection measurements and drift-diffusion simulations of the current-voltage characteristics under illumination, Langevin reduction factors of up to over two orders of magnitude are observed. The reduced recombination is essential for the high fill factors of these solar cells. The Langevin reduction factors are observed to correlate with the quadrupole moment of the acceptors, which is responsible for band bending at the donor-acceptor interface, forming a barrier for charge recombination. Overall these results therefore show that suppressed bimolecular recombination is essential for the performance of organic solar cells and provide design rules for novel materials.

15.
Phys Chem Chem Phys ; 25(9): 6847-6856, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36799358

RESUMEN

Intermolecular interactions in π-stacked chromophores strongly influence their photophysical properties, and thereby also their function in photonic applications. Mixed electronic and vibrational coupling interactions lead to complex potential energy landscapes with competitive photophysical pathways. Here, we characterize the photoexcited dynamics of the small molecule semiconductor copper pthalocyanine (CuPc) in solution and in thin film, the latter comprising two different π-stacked architectures, α-CuPc and ß-CuPc. In solution, CuPc undergoes ultrafast intersytem crossing (ISC) to the triplet excited state. In the solid state, both α-CuPc and ß-CuPc morphologies exhibit a mixing between Frenkel and charge-transfer excitons (Frenkel-CT mixing). We find that this mixing influences the photophysical properties differently, based on morphology. In addition to ISC, α-CuPc demonstrates symmetry-breaking charge transfer, which furthermore depends on excitation wavelength. This mechanism is not observed in ß-CuPc. These results elucidate how molecular organization mediates the balance of competitive photexcited decay mechanisms in organic semiconductors.

16.
Macromol Biosci ; 23(2): e2200294, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36281903

RESUMEN

Amyloid-like fibrils are a special class of self-assembling peptides that emerge as a promising nanomaterial with rich bioactivity for applications such as cell adhesion and growth. Unlike the extracellular matrix, the intrinsically stable amyloid-like fibrils do not respond nor adapt to stimuli of their natural environment. Here, a self-assembling motif (CKFKFQF), in which a photosensitive o-nitrobenzyl linker (PCL) is inserted, is designed. This peptide (CKFK-PCL-FQF) assembles into amyloid-like fibrils comparable to the unsubstituted CKFKFQF and reveals a strong response to UV-light. After UV irradiation, the secondary structure of the fibrils, fibril morphology, and bioactivity are lost. Thus, coating surfaces with the pre-formed fibrils and exposing them to UV-light through a photomask generate well-defined areas with patterns of intact and destroyed fibrillar morphology. The unexposed, fibril-coated surface areas retain their ability to support cell adhesion in culture, in contrast to the light-exposed regions, where the cell-supportive fibril morphology is destroyed. Consequently, the photoresponsive peptide nanofibrils provide a facile and efficient way of cell patterning, exemplarily demonstrated for A549, Chinese Hamster Ovary, and Raw Dual type cells. This study introduces photoresponsive amyloid-like fibrils as adaptive functional materials to precisely arrange cells on surfaces.


Asunto(s)
Amiloide , Péptidos , Cricetinae , Animales , Amiloide/química , Amiloide/metabolismo , Células CHO , Cricetulus , Estructura Secundaria de Proteína
17.
Mater Horiz ; 9(10): 2633-2643, 2022 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-35997011

RESUMEN

Controlling crystal growth and reducing the number of grain boundaries are crucial to maximize the charge carrier transport in organic-inorganic perovskite field-effect transistors (FETs). Herein, the crystallization and growth kinetics of a Sn(II)-based 2D perovskite, using 2-thiopheneethylammonium (TEA) as the organic cation spacer, were effectively regulated by the hot-casting method. With increasing crystalline grain size, the local charge carrier mobility is found to increase moderately from 13 cm2 V-1 s-1 to 16 cm2 V-1 s-1, as inferred from terahertz (THz) spectroscopy. In contrast, the FET operation parameters, including mobility, threshold voltage, hysteresis, and subthreshold swing, improve substantially with larger grain size. The optimized 2D (TEA)2SnI4 transistor exhibits hole mobility of up to 0.34 cm2 V-1 s-1 at 295 K and a higher value of 1.8 cm2 V-1 s-1 at 100 K. Our work provides an important insight into the grain engineering of 2D perovskites for high-performance FETs.

18.
Small ; 18(26): e2108077, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35642950

RESUMEN

Organic electrochemical transistors (OECTs) rely on volumetric ion-modulation of the electronic current to provide low-voltage operation, large signal amplification, enhanced sensing capabilities, and seamless integration with biology. The majority of current OECT technologies require multistep photolithographic microfabrication methods on glass or plastic substrates, which do not provide an ideal path toward ultralow cost ubiquitous and sustainable electronics and bioelectronics. At the same time, the development of advanced bioelectronic circuits combining bio-detection, amplification, and local processing functionalities urgently demand for OECT technology platforms with a monolithic integration of high-performance iontronic circuits and sensors. Here, fully printed mask-less OECTs fabricated on thin-film biodegradable and compostable substrates are proposed. The dispensing and capillary printing methods are used for depositing both high- and low-viscosity OECT materials. Fully printed OECT unipolar inverter circuits with a gain normalized to the supply voltage as high as 136.6 V-1 , and current-driven sensors for ion detection and real-time monitoring with a sensitivity of up to 506 mV dec-1 , are integrated on biodegradable and compostable substrates. These universal building blocks with the top-performance ever reported demonstrate the effectiveness of the proposed approach and can open opportunities for next-generation high-performance sustainable bioelectronics.


Asunto(s)
Técnicas Biosensibles , Transistores Electrónicos , Técnicas Biosensibles/métodos , Electrónica
19.
Adv Sci (Weinh) ; 9(19): e2200056, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35253396

RESUMEN

Excellent performance has been reported for organic light-emitting diodes (OLEDs) based on small molecule emitters that exhibit thermally activated delayed fluorescence. However, the necessary vacuum processing makes the fabrication of large-area devices based on these emitters cumbersome and expensive. Here, the authors present high performance OLEDs, based on novel, TADF polymers that can be readily processed from a solution. These polymers are based on the acridine-benzophenone donor-acceptor motif as main-chain TADF chromophores, linked by various conjugated and non-conjugated spacer moieties. The authors' extensive spectroscopic and electronic analysis shows that in particular in case of alkyl spacers, the properties and performance of the monomeric TADF chromophores are virtually left unaffected by the polymerization. They present efficient solution-processed OLEDs based on these TADF polymers, diluted in oligostyrene as a host. The devices based on the alkyl spacer-based TADF polymers exhibit external quantum efficiencies (EQEs) ≈12%, without any outcoupling-enhancing measures. What's more, the EQE of these devices does not drop substantially upon diluting the polymer down to only ten weight percent of active material. In contrast, the EQE of devices based on the monomeric chromophore show significant losses upon dilution due to loss of charge percolation.

20.
ACS Appl Mater Interfaces ; 14(6): 7523-7526, 2022 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-35112566

RESUMEN

Understanding interface-related phenomena is important for improving the performance of thin-film solar cells. In ACS Appl. Mater. Interfaces 2021, 13, 12603-12609, Pranav et al. report that incorporating a thin C60 interlayer at the MoO3 anode results in reduced surface recombination of electrons, which is ascribed to a decreased electron accumulation near the anode on account of an increased built-in voltage. Here, we offer an alternative explanation: the introduction of a C60 interlayer renders the MoO3 contact Ohmic. The reduced anode barrier simultaneously increases the built-in voltage, minimizes nonradiative voltage losses upon the extraction of majority carriers (holes), and suppresses minority-carrier (electron) surface recombination, the latter being the result of hole accumulation and associated band bending near the Ohmic hole contact. We therefore argue that Ohmic contact formation suppresses both majority- and minority-carrier surface recombination losses, whereas the built-in voltage per se does not play a major role in this respect.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA