Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Más filtros

Intervalo de año de publicación
1.
Biomed Pharmacother ; 179: 117291, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39146766

RESUMEN

Staphylococcus aureus is a bacterium responsible for resistance to multiple drugs and the efflux system is widely studied among the resistance mechanisms developed by this species. The present study evaluates the inhibition of the MepA efflux pump by thiadiazine-derived compounds. For this purpose, thiadiazine-derived compounds (IJ-14 to IJ-20) were tested against S. aureus K2068 strains. Microdilution tests were initially conducted to assess the Minimum Inhibitory Concentration (MIC) of the compounds and their efflux pump inhibition activity. In addition, fluorimetry tests were performed using BrEt emission and tests were conducted to inhibit the expression of the mepA gene. This involved comparing the bacterial gene expression with the antibiotic alone to the gene expression after combining compounds (IJ-17 and IJ-20) with the antibiotic. Furthermore, membrane permeability assessment tests and in silico molecular docking tests were performed. It was observed that the IJ17 and IJ20 compounds exhibited direct activity against the tested strain. The IJ17 compound produced significant results in the gene inhibition tests, which was also evidenced through the membrane permeability alteration test. These findings suggest that thiadiazine-derived compounds have promising effects against one of the main resistance mechanisms, with the IJ17 compound presenting observable mechanisms of action.

2.
FEBS Lett ; 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39095330

RESUMEN

Goto-Kakizaki (GK) rats develop a well-defined insulin resistance (IR) and type 2 diabetes mellitus (T2DM) without presenting obesity. The lymphocyte profile in nonobese diabetic conditions is not yet characterized. Therefore, GK rats were chosen to explore T lymphocyte (TL) dynamics at various stages (21, 60, and 120 days) compared to Wistar rats. GK rats exhibit progressive disruption of glucose regulation, with early glucose intolerance at 21 days and reduced insulin sensitivity at 60 days, confirming IR. Glucose transporter 1 (GLUT1) expression was consistently elevated in GK rats, suggesting heightened TL activation. T-regulatory lymphocyte markers diminished at 21 days. However, GK rats showed increased Th1 markers and reduced Gata-3 expression (crucial for Th2 cell differentiation) at 120 days. These findings underscore an early breakdown of anti-inflammatory mechanisms in GK rats, indicating a proinflammatory TL profile that may worsen chronic inflammation in T2DM.

3.
Respir Res ; 25(1): 264, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965590

RESUMEN

BACKGROUND: Bronchoscopic lung volume reduction (BLVR) with one-way endobronchial valves (EBV) has better outcomes when the target lobe has poor collateral ventilation, resulting in complete lobe atelectasis. High-inspired oxygen fraction (FIO2) promotes atelectasis through faster gas absorption after airway occlusion, but its application during BLVR with EBV has been poorly understood. We aimed to investigate the real-time effects of FIO2 on regional lung volumes and regional ventilation/perfusion by electrical impedance tomography (EIT) during BLVR with EBV. METHODS: Six piglets were submitted to left lower lobe occlusion by a balloon-catheter and EBV valves with FIO2 0.5 and 1.0. Regional end-expiratory lung impedances (EELI) and regional ventilation/perfusion were monitored. Local pocket pressure measurements were obtained (balloon occlusion method). One animal underwent simultaneous acquisitions of computed tomography (CT) and EIT. Regions-of-interest (ROIs) were right and left hemithoraces. RESULTS: Following balloon occlusion, a steep decrease in left ROI-EELI with FIO2 1.0 occurred, 3-fold greater than with 0.5 (p < 0.001). Higher FIO2 also enhanced the final volume reduction (ROI-EELI) achieved by each valve (p < 0.01). CT analysis confirmed the denser atelectasis and greater volume reduction achieved by higher FIO2 (1.0) during balloon occlusion or during valve placement. CT and pocket pressure data agreed well with EIT findings, indicating greater strain redistribution with higher FIO2. CONCLUSIONS: EIT demonstrated in real-time a faster and more complete volume reduction in the occluded lung regions under high FIO2 (1.0), as compared to 0.5. Immediate changes in the ventilation and perfusion of ipsilateral non-target lung regions were also detected, providing better estimates of the full impact of each valve in place. TRIAL REGISTRATION: Not applicable.


Asunto(s)
Broncoscopía , Impedancia Eléctrica , Animales , Porcinos , Broncoscopía/métodos , Neumonectomía/métodos , Pulmón/diagnóstico por imagen , Pulmón/fisiopatología , Pulmón/cirugía , Pulmón/fisiología , Tomografía/métodos , Atelectasia Pulmonar/diagnóstico por imagen , Atelectasia Pulmonar/fisiopatología , Mediciones del Volumen Pulmonar/métodos , Factores de Tiempo
4.
Angew Chem Int Ed Engl ; 63(35): e202319892, 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39046086

RESUMEN

The concepts of sustainability and sustainable chemistry have attracted increasing attention in recent years, being of great importance to the younger generation. In this Viewpoint Article, we share how early-career chemists can contribute to the sustainable transformation of their discipline. We identify ways in which they can engage to catalyse action for change. This article does not attempt to answer questions about the most promising or pressing areas driving research and chemical innovation in the context of sustainability. Instead, we want to inspire and engage early-career chemists in pursuing sustainable actions by showcasing opportunities in education, outreach and policymaking, research culture and publishing, while highlighting existing challenges and the complexity of the topic. We want to empower early-career chemists by providing resources and ideas for engagement for a sustainable future globally. While the article focuses on students and early-career chemists, it provides insights to further stimulate the engagement of scientists from diverse backgrounds.


Asunto(s)
Química , Humanos , Química/economía , Química/educación , Química/tendencias , Desarrollo Sostenible
5.
J Bone Miner Res ; 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39073912

RESUMEN

The overarching goal of osteoporosis management is to prevent fractures. A goal-directed approach to long-term management of fracture risk helps ensure that the most appropriate initial treatment and treatment sequence is selected for individual patients. Goal-directed treatment decisions require assessment of clinical fracture history, vertebral fracture identification (using vertebral imaging as appropriate), measurement of bone mineral density (BMD) and consideration of other major clinical risk factors. Treatment targets should be tailored to each patient's individual risk profile and based on the specific indication for beginning treatment, including recency, site, number and severity of prior fractures, and BMD levels at the total hip, femoral neck, and lumbar spine. Instead of first-line bisphosphonate treatment for all patients, selection of initial treatment should focus on reducing fracture risk rapidly for patients at very high and imminent risk, such as in those with recent fractures. Initial treatment selection should also consider the probability that a BMD treatment target can be attained within a reasonable period of time and the differential magnitude of fracture risk reduction and BMD impact with osteoanabolic versus antiresorptive therapy. This position statement of the ASBMR/BHOF Task Force on Goal-Directed Osteoporosis Treatment provides an overall summary of the major clinical recommendations about treatment targets and strategies to achieve those targets based on the best evidence available, derived primarily from studies in older postmenopausal women of European ancestry.


Goal-directed treatment can help healthcare providers recommend the best treatments for individual patients to prevent fractures. The goal-directed strategy considers the site, number and recency of prior fractures. This may require imaging for spine fractures, which may not have caused pain. Treatment decisions also require bone mineral density (BMD) measurement and consideration of other major risk factors. In contrast to the standard approach, same first treatment for all, treatment selection is tailored to an individual's risk. In patients with recent fractures of the spine, hip or pelvis, fracture risk is very high and treatment should rapidly reduce that risk. For others, the target is a specific BMD level and should consider the likelihood that the treatment target can be attained within a reasonable period of time, which differs for osteoporosis medications. After initial therapy, BMD should be assessed to determine if the target has been achieved. If so, strategies should focus on maintaining BMD. If the target is not yet achieved, treatment should be intensified, or continued if it is already the most potent option. This position statement represents a consensus of expert recommendations about treatment targets and strategies to achieve those targets based on the best available evidence.

6.
Macromol Biosci ; : e2400014, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39072995

RESUMEN

Previously, a new biodegradable poly(ester urethane urea) was synthesized based on polycaprolactone-diol and fish gelatin (PU-Gel). In this work, the potential of this new material for neural tissue engineering is evaluated. Membranes with randomly oriented fibers and with aligned fibers are produced using electrospinning and characterized regarding their mechanical behavior under both dry and wet conditions. Wet samples exhibit a lower Young's modulus than dry ones and aligned membranes are stiffer and more brittle than those randomly oriented. Cyclic tensile tests are conducted and high values for recovery ratio and resilience are obtained. Both membranes exhibited a hydrophobic surface, measured by the water contact angle (WCA). Human mesenchymal stem cells from umbilical cord tissue (UC-MSCs) and human neural stem cells (NSCs) are seeded on both types of membranes, which support their adhesion and proliferation. Cells stained for the cytoskeleton and nucleus in membranes with aligned fibers display an elongated morphology following the alignment direction. As the culture time increased, higher cell viability is obtained on randomfibers for UC-MSCs while no differences are observed for NSCs. The membranes support neuronal differentiation of NSCs, as evidenced by markers for a neuronal filament protein (NF70) and for a microtubule-associated protein (MAP2).

7.
ACS Appl Polym Mater ; 6(11): 6820-6830, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38903401

RESUMEN

Food smart packaging has emerged as a promising technology to address consumer concerns regarding food conservation and food safety. In this context, we report the rational design of azide-containing pyranoflavylium-based pH-sensitive dye for subsequent click chemistry conjugation toward a chitosan-modified alkyne. The chitosan-pyranoflavylium conjugate was characterized by infrared (ATR-FTIR), ultraviolet-visible (UV-vis), nuclear magnetic resonance (NMR) spectroscopies, and dynamic light scattering (DLS), as well as its thermodynamic parameters related to their pH-dependent chromatic features. The fabrication of thin-films through electrostatic-driven layer-by-layer (LbL) assembly technology was first screened by quartz crystal microbalance with dissipation monitoring (QCM-D) onto gold substrates, and then free-standing (FS) multilayered membranes from polypropylene substrate were obtained using a homemade automatic dipping robot. The membranes' characterization included morphology analysis and thickness evaluation, assessed by scanning electron microscopy (SEM), pH-responsive color change performance tests using buffer solutions at different pH levels, and biogenic amines-enriched model solutions, demonstrating the feasibility and effectiveness of the chitosan-pyranoflavylium/alginate biomembranes for food spoilage monitoring. This work provides insights toward the development of innovative pH-responsive smart biomaterials for advanced and sustainable technological packaging solutions, which could significantly contribute to ensuring food safety and quality, while reducing food waste.

8.
Biomimetics (Basel) ; 9(6)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38921205

RESUMEN

The aging population and increasing incidence of trauma among younger age groups have heightened the increasing demand for reliable implant materials. Effective implant materials must demonstrate rapid osseointegration and strong antibacterial properties to ensure optimal patient outcomes and decrease the chance of implant rejection. This study aims to enhance the bone-implant interface by utilizing 45S5 bioglass modified with various concentrations of Fe3O4 as a coating material. The effect of the insertion of Fe3O4 into the bioglass structure was studied using Raman spectroscopy which shows that with the increase in Fe3O4 concentration, new vibration bands associated with Fe-related structural units appeared within the sample. The bioactivity of the prepared glasses was evaluated using immersion tests in simulated body fluid, revealing the formation of a calcium phosphate-rich layer within 24 h on the samples, indicating their potential for enhanced tissue integration. However, the sample modified with 8 mol% of Fe3O4 showed low reactivity, developing a calcium phosphate-rich layer within 96 h. All the bioglasses showed antibacterial activity against the Gram-positive and Gram-negative bacteria. The modified bioglass did not present significant antibacterial properties compared to the bioglass base.

9.
Animals (Basel) ; 14(10)2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38791717

RESUMEN

Equine skin wound treatment continues to be a challenge for veterinarians. Despite being a frequent practice, it remains difficult to choose an evidence-based treatment protocol. This study aimed to comprehensively explore the literature and provide a scoping review of therapeutic strategies for equine skin wounds and identify knowledge gaps and opportunities for future research. This review was conducted using specific criteria to select literature that described methods to manage second intention wound healing. After removing duplicates and screening papers for suitability, 81 manuscripts were included for data extraction. Of these, 59 articles were experimental studies, 10 were case reports, 9 were case series, and 3 were clinical studies. The most frequent wound location was the distal limbs. Macroscopic assessment was the main tool used to evaluate treatment effectiveness. All of the case reports, case series, and clinical studies reported positive outcomes with regard to the treatment used, while only 36% of the experimental studies found significant healing improvement in treated wounds compared to control groups. It was found that there are many treatments that have exhibited controversial results, and there exists a lack of evidence for the adoption of specific treatment protocols.

10.
Domest Anim Endocrinol ; 88: 106853, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38729096

RESUMEN

The aim of this study was to produce a longer proestrus by early administration of prostaglandin F2α (PGF) in a timed artificial insemination (TAI) protocol in non-suckling Bos taurus (Angus crossbreed) beef cows. On day 0, cows (n = 489) were treated with an intravaginal 1 g progesterone (P4) device and 2 mg of estradiol benzoate. On day 7, cows were randomized into two groups: PGF7(n = 244; 500 µg of sodium cloprostenol 24 h before P4 device removal) or PFG8 (n = 245; 500 µg of sodium cloprostenol at P4 device removal). On day 8, P4 device was removed and cows received 0.5 mg of estradiol cypionate. All cows were submitted to TAI on day 10 (48-50 hours after P4 device removal). Cows treated with PGF on day 7 had greater expression of estrus (91.3 vs 79.1 %; P = 0.0011), regardless of CL presence at beginning of the protocol. Cows from PGF7 group had lower circulating P4 concentrations on day 8 in comparison with PGF8 treated cows (1.86 vs 2.99 ng/mL; P < 0.001). However, preovulatory follicle diameter did not differ among treatments at TAI (11.9 vs 11.8 mm; P = 0.7881). Pregnancy per TAI (P/TAI) was greater for PGF7 (63.9 vs 50.6 %; P = 0.0114) than PGF8 treated cows. In cows with follicles <8.5 mm at TAI, expression of estrus (33.3 vs 26.6 %; P = 0.6427) and P/TAI (40 vs 26.6 %; P = 0.3657) were low in both PGF7 and PGF8 treated cows, respectively. In cows with medium follicle size (8.5 to 11.9 mm) PGF7 treated cows had greater expression of estrus (90.5 vs 80 %; P = 0.033) and P/TAI (62.2 vs 49 %; P = 0.053). In cows with follicles >12 mm, expression of estrus was greater for PGF7 than PGF8 treated cows (99.1 vs 93.3 %; P = 0.045), however P/TAI did not differ (68.2 vs 59 %; P = 0.149). In cows with P4 < 1.99 ng/mL on day 8, expression of estrus was similar between PGF7 and PGF8 treated cows (92.6 vs 90.4 %; P = 0.53), and P/TAI tended to be greater for PGF7 than PGF8 treated cows (63 vs 52.1 % P = 0.076). However, in cows with P4 > 2 ng/mL PGF7 cows had higher expression of estrus (89 vs 67.5 %; P = 0.0005) and P/TAI (64.8 vs 48.7 %; P = 0.021) than PGF8. Thus, increasing the proestrous period by inducing luteolysis 24 hours earlier than removing the P4 intravaginal device enhanced fertility in non-suckling cyclic beef cows by increasing expression of estrus and P/TAI.


Asunto(s)
Dinoprost , Inseminación Artificial , Luteólisis , Progesterona , Animales , Bovinos/fisiología , Femenino , Inseminación Artificial/veterinaria , Dinoprost/farmacología , Dinoprost/administración & dosificación , Embarazo , Luteólisis/efectos de los fármacos , Progesterona/farmacología , Progesterona/administración & dosificación , Progesterona/sangre , Sincronización del Estro/métodos , Estradiol/farmacología , Estradiol/administración & dosificación , Estradiol/análogos & derivados , Cloprostenol/farmacología , Cloprostenol/administración & dosificación
11.
Heliyon ; 10(7): e28288, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38571600

RESUMEN

The growing consumer interest fueled by the belief in the superiority of organic foods raises questions about their actual nutritional superiority over conventional ones. This assumption remains a controversial issue. The present study addresses scientific evidence to clarify this controversy and provide relevant insights for informed decision-making regarding dietary choices. We collected 147 scientific articles containing 656 comparative analyses based on 1779 samples of 68 vegetable, fruit, and other (cereals, pulses, etc.) foods, 22 nutritional properties, and nine residues. Results show that in 191 (29.1%) comparisons, there were significant differences between organic and conventional foods. In a similar quantity of cases (190; 29.0%), there were divergences in the results since some studies reported significant differences while others did not. Finally, most of the comparative analyses (275; 41.9%) showed no significant difference between organic and conventional foods. Therefore, the results herein show no generalizable superiority of organic over conventional foods. Claims for nutritious advantages would eventually be applied to specific comparisons, depending on the food type and nutritional parameter.

12.
Biomimetics (Basel) ; 9(4)2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38667224

RESUMEN

In recent decades, the requirements for implantable medical devices have increased, but the risks of implant rejection still exist. These issues are primarily associated with poor osseointegration, leading to biofilm formation on the implant surface. This study focuses on addressing these issues by developing a biomaterial for implant coatings. 45S5 bioglass® has been widely used in tissue engineering due to its ability to form a hydroxyapatite layer, ensuring a strong bond between the hard tissue and the bioglass. In this context, 45S5 bioglasses®, modified by the incorporation of different amounts of copper oxide, from 0 to 8 mol%, were synthesized by the melt-quenching technique. The incorporation of Cu ions did not show a significant change in the glass structure. Since the bioglass exhibited the capacity for being polarized, thereby promoting the osseointegration effectiveness, the electrical properties of the prepared samples were studied using the impedance spectroscopy method, in the frequency range of 102-106 Hz and temperature range of 200-400 K. The effects of CuO on charge transport mobility were investigated. Additionally, the bioactivity of the modified bioglasses was evaluated through immersion tests in simulated body fluid. The results revealed the initiation of a Ca-P-rich layer formation on the surface within 24 h, indicating the potential of the bioglasses to enhance the bone regeneration process.

13.
Intensive Care Med Exp ; 12(1): 34, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38592650

RESUMEN

BACKGROUND: The same principle behind pulse wave analysis can be applied on the pulmonary artery (PA) pressure waveform to estimate right ventricle stroke volume (RVSV). However, the PA pressure waveform might be influenced by the direct transmission of the intrathoracic pressure changes throughout the respiratory cycle caused by mechanical ventilation (MV), potentially impacting the reliability of PA pulse wave analysis (PAPWA). We assessed a new method that minimizes the direct effect of the MV on continuous PA pressure measurements and enhances the reliability of PAPWA in tracking beat-to-beat RVSV. METHODS: Continuous PA pressure and flow were simultaneously measured for 2-3 min in 5 pigs using a high-fidelity micro-tip catheter and a transonic flow sensor around the PA trunk, both pre and post an experimental ARDS model. RVSV was estimated by PAPWA indexes such as pulse pressure (SVPP), systolic area (SVSystAUC) and standard deviation (SVSD) beat-to-beat from both corrected and non-corrected PA signals. The reference RVSV was derived from the PA flow signal (SVref). RESULTS: The reliability of PAPWA in tracking RVSV on a beat-to-beat basis was enhanced after accounting for the direct impact of intrathoracic pressure changes induced by MV throughout the respiratory cycle. This was evidenced by an increase in the correlation between SVref and RVSV estimated by PAPWA under healthy conditions: rho between SVref and non-corrected SVSD - 0.111 (0.342), corrected SVSD 0.876 (0.130), non-corrected SVSystAUC 0.543 (0.141) and corrected SVSystAUC 0.923 (0.050). Following ARDS, correlations were SVref and non-corrected SVSD - 0.033 (0.262), corrected SVSD 0.839 (0.077), non-corrected SVSystAUC 0.483 (0.114) and corrected SVSystAUC 0.928 (0.026). Correction also led to reduced limits of agreement between SVref and SVSD and SVSystAUC in the two evaluated conditions. CONCLUSIONS: In our experimental model, we confirmed that correcting for mechanical ventilation induced changes during the respiratory cycle improves the performance of PAPWA for beat-to-beat estimation of RVSV compared to uncorrected measurements. This was demonstrated by a better correlation and agreement between the actual SV and the obtained from PAPWA.

14.
Biomimetics (Basel) ; 9(3)2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38534828

RESUMEN

Open-cell foams based on hydroxyapatite (HAp) can mimic the extracellular matrix (ECM) to better replace damaged hard tissues and assist in their regeneration processes. Aerogels of HAp nanowires (NW) with barium titanate (BT) particles were produced and characterized regarding their physical and chemical properties, bioactivity, and in vitro cytotoxicity. Considering the role of piezoelectricity (mainly due to collagen) and surface charges in bone remodeling, all BT particles, of size 280 nm and 2 and 3 µm, contained BaTiO3 in their piezoelectric tetragonal phase. The synthesized nanowires were verified to be AB-type carbonated hydroxyapatite. The aerogels showed high porosity and relatively homogeneous distribution of the BT particles. Barium titanate proved to be non-cytotoxic while all the aerogels produced were cytotoxic for an extract concentration of 1 mg/mL but became non-cytotoxic at concentrations of 0.5 mg/mL and below. It is possible that these results were affected by the higher surface area and quicker dissolution rate of the aerogels. In the bioactivity assays, SEM/EDS, it was not easy to differentiate between the apatite deposition and the surface of the HAp wires. However, a quantitative EDS analysis shows a possible CaP deposition/dissolution cycle taking place.

15.
Life Sci ; 344: 122558, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38471621

RESUMEN

AIMS: Colorectal cancer is the third most frequent type of cancer and the second leading cause of cancer-related deaths worldwide. The majority of cases are diagnosed at a later stage, leading to the need for more aggressive treatments such as chemotherapy. 5-Fluorouracil (5-FU), known for its high cytotoxic properties has emerged as a chemotherapeutic agent. However, it presents several drawbacks such as lack of specificity and short half-life. To reduce these drawbacks, several strategies have been designed namely chemical modification or association to drug delivery systems. MATERIALS AND METHODS: Current research was focused on the design, physicochemical characterization and in vitro evaluation of a lipid-based system loaded with 5-FU. Furthermore, aiming to maximize preferential targeting and release at tumour sites, a hybrid lipid-based system, combining both therapeutic and magnetic properties was developed and validated. For this purpose, liposomes co-loaded with 5-FU and iron oxide (II, III) nanoparticles were accomplished. KEY FINDINGS: The characterization of the developed nanoformulation was performed in terms of incorporation parameters, mean size and surface charge. In vitro studies assessed in a murine colon cancer cell line confirmed that 5-FU antiproliferative activity was preserved after incorporation in liposomes. In same model, iron oxide (II, III) nanoparticles did not exhibit cytotoxic properties. Additionally, the presence of these nanoparticles was shown to confer magnetic properties to the liposomes, allowing them to respond to external magnetic fields. SIGNIFICANCE: Overall, a lipid nanosystem loading a chemotherapeutic agent displaying magnetic characteristics was successfully designed and physicochemically characterized, for further in vivo applications.


Asunto(s)
Antineoplásicos , Compuestos Férricos , Nanopartículas , Animales , Ratones , Fluorouracilo , Liposomas , Antineoplásicos/farmacología , Sistemas de Liberación de Medicamentos , Nanopartículas/química , Fenómenos Magnéticos , Lípidos , Portadores de Fármacos/química , Línea Celular Tumoral
17.
Polymers (Basel) ; 16(4)2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38399904

RESUMEN

The small pore size of electrospun membranes prevents their use as three-dimensional scaffolds. In this work, we produced polycaprolactone (PCL) electrospun fibrous membranes with expanded pores by incorporating chitosan (CS) granules into the PCL solution. Scanning electron microscopy images confirmed the presence of the CS granules embedded in the PCL fibers, creating an open structure. Tensile testing results showed that the addition of CS decreased both Young's modulus and the yield stress, but co-electrospun membranes (PCL fibers blended with CS-containing PCL fibers) exhibited higher values compared to single electrospun membranes (CS-containing PCL fibers). Human fibroblasts adhered to and proliferated on all scaffolds. Nuclear staining revealed that cells populated the entire scaffold when CS granules were present, while in PCL membranes, cells were mostly limited to the surface due to the small pore size. Overall, our findings demonstrate that electrospun membranes containing CS granules have sufficiently large pores to facilitate fibroblast infiltration without compromising the mechanical stability of the structure.

18.
Adv Healthc Mater ; 13(13): e2304587, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38334308

RESUMEN

Medical adhesives are emerging as an important clinical tool as adjuvants for sutures and staples in wound closure and healing and in the achievement of hemostasis. However, clinical adhesives combining cytocompatibility, as well as strong and stable adhesion in physiological conditions, are still in demand. Herein, a mussel-inspired strategy is explored to produce adhesive coacervates using tannic acid (TA) and methacrylate pullulan (PUL-MA). TA|PUL-MA coacervates mainly comprise van der Waals forces and hydrophobic interactions. The methacrylic groups in the PUL backbone increase the number of interactions in the adhesives matrix, resulting in enhanced cohesion and adhesion strength (72.7 Jm-2), compared to the non-methacrylated coacervate. The adhesive properties are kept in physiologic-mimetic solutions (72.8 Jm-2) for 72 h. The photopolymerization of TA|PUL-MA enables the on-demand detachment of the adhesive. The poor cytocompatibility associated with the use of phenolic groups is here circumvented by mixing reactive oxygen species-degrading enzyme in the adhesive coacervate. This addition does not hamper the adhesive character of the materials, nor their anti-microbial or hemostatic properties. This affordable and straightforward methodology, together with the tailorable adhesivity even in wet environments, high cytocompatibility, and anti-bacterial activity, enables foresee TA|PUL-MA as a promising ready-to-use bioadhesive for biomedical applications.


Asunto(s)
Antibacterianos , Taninos , Antibacterianos/química , Antibacterianos/farmacología , Taninos/química , Taninos/farmacología , Animales , Polifenoles/química , Polifenoles/farmacología , Adhesivos/química , Adhesivos/farmacología , Glucanos/química , Glucanos/farmacología , Humanos , Ratones , Escherichia coli/efectos de los fármacos , Metacrilatos/química , Polímeros/química , Polímeros/farmacología , Adhesivos Tisulares/química , Adhesivos Tisulares/farmacología
19.
Materials (Basel) ; 17(2)2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38276437

RESUMEN

45S5 Bioglass has been widely used in regenerative medicine due to its ability to dissolve when inserted into the body. Its typically amorphous structure allows for an ideal dissolution rate for the formation of the hydroxyapatite layer, which is important for the development of new bone. This bioactive capacity can also be controlled by adding other oxides (e.g., SrO, ZnO, and MgO) to the 45S5 Bioglass network or by storing electrical charge. Ions such as zinc, magnesium, and strontium allow for specific biological responses to be added, such as antibacterial action and the ability to increase the rate of osteoblast proliferation. The charge storage capacity allows for a higher rate of bioactivity to be achieved, allowing for faster attachment to the host bone, decreasing the patient's recovery time. Therefore, it is necessary to understand the variation in the structure of the bioglass with regard to the amount of non-bridging oxygens (NBOs), which is important for the bioactivity rate not to be compromised, and also its influence on the electrical behavior relevant to its potential as electrical charge storage. Thus, several bioactive glass compositions were synthesized based on the 45S5 Bioglass formulation with the addition of various concentrations (0.25, 0.5, 1, and 2, mol%) of zinc, strontium, or magnesium oxides. The influence of the insertion of these oxides on the network was evaluated by studying the amount of NBOs using Raman spectroscopy and their implication on the electrical behavior. Electrical characterization was performed in ac (alternating current) and dc (direct current) regimes.

20.
Adv Healthc Mater ; 13(8): e2302713, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38116714

RESUMEN

Surfaces with biological functionalities are of great interest for biomaterials, tissue engineering, biophysics, and for controlling biological processes. The layer-by-layer (LbL) assembly is a highly versatile methodology introduced 30 years ago, which consists of assembling complementary polyelectrolytes or biomolecules in a stepwise manner to form thin self-assembled films. In view of its simplicity, compatibility with biological molecules, and adaptability to any kind of supporting material carrier, this technology has undergone major developments over the past decades. Specific applications have emerged in different biomedical fields owing to the possibility to load or immobilize biomolecules with preserved bioactivity, to use an extremely broad range of biomolecules and supporting carriers, and to modify the film's mechanical properties via crosslinking. In this review, the focus is on the recent developments regarding LbL films formed as 2D or 3D objects for applications in drug delivery and tissue engineering. Possible applications in the fields of vaccinology, 3D biomimetic tissue models, as well as bone and cardiovascular tissue engineering are highlighted. In addition, the most recent technological developments in the field of film construction, such as high-content liquid handling or machine learning, which are expected to open new perspectives in the future developments of LbL, are presented.


Asunto(s)
Nanopartículas Capa por Capa , Ingeniería de Tejidos , Materiales Biocompatibles , Sistemas de Liberación de Medicamentos , Polielectrolitos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA