Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Int J Mol Sci ; 24(22)2023 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-38003677

RESUMEN

Due to the incidence of ovarian cancer (OC) and the limitations of available therapeutic strategies, it is necessary to search for novel therapeutic solutions. The aim of this study was to evaluate the cytotoxic effect of betulin 1 and its propynoyl derivatives 2-6 against ovarian cancer cells (SK-OV-3, OVCAR-3) and normal myofibroblasts (18Co). Paclitaxel was used as the reference compound. The propynoyl derivatives 2-6 exhibited stronger antiproliferative and cytotoxic activities compared to betulin 1. In both ovarian cancer cell lines, the most potent compound was 28-propynoylbetulin 2. In the case of compound 2, the calculated IC50 values were 0.2 µM for the SK-OV-3 cells and 0.19 µM for the OVCAR-3 cells. Under the same culture conditions, the calculated IC50 values for compound 6 were 0.26 µM and 0.59 µM, respectively. It was observed that cells treated with compounds 2 and 6 caused a decrease in the potential of the mitochondrial membrane and a significant change in cell morphology. Betulin 1, a diol from the group of pentacyclic triterpenes, has a confirmed wide spectrum of biological effects, including a significant anticancer effect. It is characterized by low bioavailability, which can be improved by introducing changes to its structure. The results showed that chemical modifications of betulin 1 only at position C-28 with the propynoyl group (compound 2) and additionally at position C-3 with the phosphate group (compound 3) or at C-29 with the phosphonate group (compound 6) allowed us to obtain compounds with greater cytotoxic activity than their parent compounds, which could be used to develop novel therapeutic systems effective in the treatment of ovarian cancer.


Asunto(s)
Antineoplásicos , Neoplasias Ováricas , Triterpenos , Humanos , Femenino , Apoptosis , Relación Estructura-Actividad , Línea Celular Tumoral , Neoplasias Ováricas/tratamiento farmacológico , Triterpenos/farmacología , Triterpenos/química , Antineoplásicos/farmacología , Antineoplásicos/química , Proliferación Celular , Ensayos de Selección de Medicamentos Antitumorales
2.
Molecules ; 28(6)2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36985481

RESUMEN

Cancer cells need to carefully regulate their metabolism to keep them growing and dividing under the influence of different nutrients and oxygen levels. Muscle isoform 2 of pyruvate kinase (PKM2) is a key glycolytic enzyme involved in the generation of ATP and is critical for cancer metabolism. PKM2 is expressed in many human tumors and is regulated by complex mechanisms that promote tumor growth and proliferation. Therefore, it is considered an attractive therapeutic target for modulating tumor metabolism. Various modulators regulate PKM2, shifting it between highly active and less active states. In the presented work, a series of 8-quinolinesulfonamide derivatives of PKM2 modulators were designed using molecular docking and molecular dynamics techniques. New compounds were synthesized using the copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction. Compound 9a was identified in in silico studies as a potent modulator of muscle isoform 2 of pyruvate kinase. The results obtained from in vitro experiments confirmed the ability of compound 9a to reduce the intracellular pyruvate level in A549 lung cancer cells with simultaneous impact on cancer cell viability and cell-cycle phase distribution. Moreover, compound 9a exhibited more cytotoxicity on cancer cells than normal cells, pointing to high selectivity in the mode of action. These findings indicate that the introduction of another quinolinyl fragment to the modulator molecule may have a significant impact on pyruvate levels in cancer cells and provides further directions for future research to find novel analogs suitable for clinical applications in cancer treatment.


Asunto(s)
Piruvato Quinasa , Quinolinas , Humanos , Piruvato Quinasa/metabolismo , Simulación del Acoplamiento Molecular , Sulfonamidas/farmacología , Isoformas de Proteínas , Quinolinas/farmacología , Proliferación Celular , Línea Celular Tumoral
3.
Pharmacol Rep ; 74(5): 1025-1040, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36045272

RESUMEN

BACKGROUND: Microphthalmia-associated transcription factor (MITF) activates the expression of genes involved in cellular proliferation, DNA replication, and repair, whereas Mcl-1 is a member of the Bcl-2 family of proteins that promotes cell survival by preventing apoptosis. The objective of the present study was to verify whether the interaction between moxifloxacin (MFLX), one of the fluoroquinolones, and MITF/Mcl-1 protein, could affect the viability, proliferation, and apoptosis in human breast cancer using both in silico and in vitro models. METHODS: Molecular docking analysis (in silico), fluorescence image cytometry, and Western blot (in vitro) techniques were applied to assess the contribution of MITF and Mcl-1 proteins in the MFLX-induced anti-proliferative and pro-apoptotic effects on the MDA-MB-231 breast cancer cells. RESULTS: We indicated the ability of MFLX to form complexes with MITF and Mcl-1 as well as the drug's capacity to affect the expression of the tested proteins. We also showed that MFLX decreased the viability and proliferation of MDA-MB-231 cells and induced apoptosis via the intrinsic death pathway. Moreover, the analysis of the cell cycle progression revealed that MFLX caused a block in the S and G2/M phases. CONCLUSIONS: We demonstrated for the first time that the observed effects of MFLX on MDA-MB-231 breast cancer cells (growth inhibition and apoptosis induction) could be related to the drug's ability to interact with MITF and Mcl-1 proteins. Furthermore, the presented results suggest that MITF and Mcl-1 proteins could be considered as the target in the therapy of breast cancer.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Moxifloxacino/farmacología , Factor de Transcripción Asociado a Microftalmía , Línea Celular Tumoral , Simulación del Acoplamiento Molecular , Apoptosis
4.
Int J Mol Sci ; 23(5)2022 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-35269667

RESUMEN

Betulin and its derivatives, 28-propyne derivative EB5 and 29-diethyl phosphonate analog ECH147, are promising compounds in anti-tumor activity studies. However, their effect on kidney cells has not yet been studied. The study aimed to determine whether betulin and its derivatives-EB5 and ECH147-influence the viability and oxidative status of human renal proximal tubule epithelial cells (RPTECs). The total antioxidant capacity of cells (TEAC), lipid peroxidation product malondialdehyde (MDA) level, and activity of antioxidant enzymes (SOD, CAT, and GPX) were evaluated. Additionally, the mRNA level of genes encoding antioxidant enzymes was assessed. Cisplatin and 5-fluorouracil were used as reference substances. Betulin and its derivatives affected the viability and antioxidant systems of RPTECs. Betulin strongly reduced TEAC in a concentration-dependent manner. All tested compounds caused an increase in MDA levels. The activity of SOD, CAT, and GPX, and the mRNA profiles of genes encoding antioxidant enzymes depended on the tested compound and its concentration. Betulin showed an cisplatin-like effect, indicating its nephrotoxic potential. Betulin derivatives EB5 and ECH147 showed different impacts on the antioxidant system, which gives hope that these compounds will not cause severe consequences for the kidneys in vivo.


Asunto(s)
Antioxidantes , Cisplatino , Antioxidantes/farmacología , Cisplatino/farmacología , Células Epiteliales , Humanos , Peroxidación de Lípido , Estrés Oxidativo , ARN Mensajero/genética , Superóxido Dismutasa/genética , Triterpenos
5.
Int J Mol Sci ; 22(22)2021 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-34830180

RESUMEN

Neuroblastoma (NB) and rhabdomyosarcoma (RMS), the most common pediatric extracranial solid tumors, still represent an important clinical challenge since no effective treatment is available for metastatic and recurrent disease. Hence, there is an urgent need for the development of new chemotherapeutics to improve the outcome of patients. Betulin (Bet), a triterpenoid from the bark of birches, demonstrated interesting anti-cancer potential. The modification of natural phytochemicals with evidenced anti-tumor activity, including Bet, is one of the methods of receiving new compounds for potential implementation in oncological treatment. Here, we showed that two acetylenic synthetic Bet derivatives (ASBDs), EB5 and EB25/1, reduced the viability and proliferation of SK-N-AS and TE671 cells, as measured by MTT and BrdU tests, respectively. Moreover, ASBDs were also more cytotoxic than temozolomide (TMZ) and cisplatin (cis-diaminedichloroplatinum [II], CDDP) in vitro, and the combination of EB5 with CDDP enhanced anti-cancer effects. We also showed the slowdown of cell cycle progression at S/G2 phases mediated by EB5 using FACS flow cytometry. The decreased viability and proliferation of pediatric cancers cells after treatment with ASBDs was linked to the reduced activity of kinases Akt, Erk1/2 and p38 and the induction of apoptosis, as investigated using Western blotting and FACS. In addition, in silico analyses of the ADMET profile found EB5 to be a promising anti-cancer drug candidate that would benefit from further investigation.


Asunto(s)
Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Triterpenos/farmacología , Acetileno/química , Antineoplásicos/farmacología , Betula/química , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Cisplatino/farmacología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Estructura Molecular , Neuroblastoma/metabolismo , Neuroblastoma/patología , Fosforilación/efectos de los fármacos , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Proteínas Proto-Oncogénicas c-akt/metabolismo , Rabdomiosarcoma/metabolismo , Rabdomiosarcoma/patología , Temozolomida/farmacología , Triterpenos/síntesis química , Triterpenos/química
6.
Eur J Med Chem ; 225: 113738, 2021 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-34425312

RESUMEN

The search for new methods of antiviral therapy is primarily focused on the use of substances of natural origin. In this context, a triterpene compound, betulin 1, proved to be a good starting point for derivatization. Thirty-eight betulin acid ester derivatives were synthetized, characterized, and tested against DNA and RNA viruses. Several compounds exhibited 4- to 11-fold better activity against Enterovirus E (compound 5 EC50: 10.3 µM) and 3- to 6-fold better activity against Human alphaherpesvirus 1 (HHV-1; compound 3c EC50: 17.2 µM). Time-of-addition experiments showed that most of the active compounds acted in the later steps of the virus replication cycle (e.g., nucleic acid/protein synthesis). Further in-silico analysis confirmed in-vitro data and demonstrated that interactions between HHV-1 DNA polymerase and the most active compound, 3c, were more stable than interactions with the parent non-active betulin 1.


Asunto(s)
Antivirales/farmacología , Ácidos Dicarboxílicos/farmacología , Diseño de Fármacos , Ésteres/farmacología , Triterpenos/farmacología , Antivirales/síntesis química , Antivirales/química , Virus ADN/efectos de los fármacos , Ácidos Dicarboxílicos/síntesis química , Ácidos Dicarboxílicos/química , Relación Dosis-Respuesta a Droga , Ésteres/síntesis química , Ésteres/química , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Virus ARN/efectos de los fármacos , Relación Estructura-Actividad , Triterpenos/síntesis química , Triterpenos/química
7.
Pharmaceutics ; 13(6)2021 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-34071116

RESUMEN

A key parameter in the design of new active compounds is lipophilicity, which influences the solubility and permeability through membranes. Lipophilicity affects the pharmacodynamic and toxicological profiles of compounds. These parameters can be determined experimentally or by using different calculation methods. The aim of the research was to determine the lipophilicity of betulin triazole derivatives with attached 1,4-quinone using thin layer chromatography in a reverse phase system and a computer program to calculate its theoretical model. The physiochemical and pharmacokinetic properties were also determined by computer programs. For all obtained parameters, the similarity analysis and multilinear regression were determined. The analyses showed that there is a relationship between structure and properties under study. The molecular docking study showed that betulin triazole derivatives with attached 1,4-quinone could inhibit selected SARS-CoV-2 proteins. The MLR regression showed that there is a correlation between affinity scoring values (ΔG) and the physicochemical properties of the tested compounds.

8.
Pharmacol Rep ; 73(6): 1765-1780, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34052981

RESUMEN

BACKGROUND: The new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was identified at the end of 2019. Despite growing understanding of SARS-CoV-2 in virology as well as many molecular studies, except remdesivir, no specific anti-SARS-CoV-2 drug has been officially approved. METHODS: In the present study molecular docking technique was applied to test binding affinity of ciprofloxacin and levofloxacin-two commercially available fluoroquinolones, to SARS-CoV-2 S-, E- and TMPRSS2 proteins, RNA-dependent RNA polymerase and papain-like protease (PLPRO). Chloroquine and dexamethasone were used as reference positive controls. RESULTS: When analyzing the molecular docking data it was noticed that ciprofloxacin and levofloxacin possess lower binding energy with S protein as compared to the references. In the case of TMPRSS2 protein and PLPRO protease the best docked ligand was levofloxacin and in the case of E proteins and RNA-dependent RNA polymerase the best docked ligands were levofloxacin and dexamethasone. Moreover, a molecular dynamics study also reveals that ciprofloxacin and levofloxacin form a stable complex with E- and TMPRSS2 proteins, RNA polymerase and papain-like protease (PLPRO). CONCLUSIONS: The revealed data indicate that ciprofloxacin and levofloxacin could interact and potentially inhibit crucial SARS-CoV-2 proteins.


Asunto(s)
Antiinfecciosos/química , Ciprofloxacina/química , Levofloxacino/química , Proteínas Virales/antagonistas & inhibidores , Sitios de Unión , Simulación por Computador , Proteasas Similares a la Papaína de Coronavirus/antagonistas & inhibidores , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , ARN Polimerasa Dependiente del ARN/antagonistas & inhibidores , SARS-CoV-2 , Serina Endopeptidasas , Tratamiento Farmacológico de COVID-19
9.
Molecules ; 26(3)2021 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-33572631

RESUMEN

A series of 30-diethylphosphate derivatives of betulin were synthesized and evaluated for their in vitro cytotoxic activity against human cancer cell lines, such as amelanotic melanoma (C-32), glioblastoma (SNB-19), and two lines of breast cancer (T47D, MDA-MB-231). The molecular structure and activities of the new compounds were also compared with their 29-phosphonate analogs. Compounds 7a and 7b showed the highest activity against C-32 and SNB-19 cell lines. The IC50 values for 7a were 2.15 and 0.91 µM, and, for 7b, they were 0.76 and 0.8 µM for the C-32 and SNB-19 lines, respectively. The most potent compounds, 7a and 7b, were tested for their effects on markers of apoptosis, such as H3, TP53, BAX, and BCL-2. For the whole series of phosphate derivatives, a lipophilicity study was performed, and the ADME parameters were calculated. The most active products were docked to the active site of the EGFR protein. The relative binding affinity of selected phosphate betulin derivatives toward EGFR was compared with standard erlotinib on the basis of ChemScore and KDEEP score. Positively, all derivatives docked inside the cavity and showed significant interactions. Moreover, a molecular dynamics study also reveals that ligands 7a,b form stable complexes and the plateau phase started after 7 ns.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Simulación del Acoplamiento Molecular , Fosfatos/química , Triterpenos/química , Triterpenos/farmacología , Línea Celular Tumoral , Humanos , Conformación Molecular
10.
Molecules ; 26(3)2021 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-33503929

RESUMEN

Betulin (BT) is a natural pentacyclic lupane-type triterpene exhibiting anticancer activity. Betulin derivatives bearing propynoyloxy and phosphate groups were prepared in an effort to improve the availability and efficacy of the drug. In this study, a comparative assessment of the in vitro anticancer activity of betulin and its four derivatives was carried out using two human breast cancer cell lines: SK-BR-3 and MCF-7. In both studied cell lines, 30-diethoxyphosphoryl-28-propynoylbetulin (compound 4) turned out to be the most powerful inhibitor of growth and inducer of cellular death. Detailed examination of that derivative pertained to the mechanisms underlying its anticancer action. Treatment with compound 4 decreased DNA synthesis and up-regulated p21WAF1/Cip1 mRNA and protein levels in both cell lines. On the other hand, that derivative caused a significant increase in cell death, as evidenced by increased lactate dehydrogenase (LDH) release and ethidium homodimer uptake. Shortly after the compound addition, an increased generation of reactive oxygen species and loss of mitochondrial membrane potential were detected. The activation of caspase-3 and fragmentation of genomic DNA suggested an apoptotic type of cell death. However, analysis of cellular morphology did not reveal any nuclear features typical of apoptosis. Despite necrosis-like morphology, dead cells exhibited activation of the cascade of caspases. These observations have led to the conclusion that compound 4 pushed cells to undergo a form of necrotic-like regulated cell demise.


Asunto(s)
Alquinos/farmacología , Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Muerte Celular/efectos de los fármacos , Necrosis/tratamiento farmacológico , Fosfatos/farmacología , Triterpenos/farmacología , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/metabolismo , Caspasas/metabolismo , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Humanos , L-Lactato Deshidrogenasa/metabolismo , Células MCF-7 , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Regulación hacia Arriba/efectos de los fármacos
11.
Bioorg Chem ; 106: 104478, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33272711

RESUMEN

In this research, betulin derivatives were bonded to the 1,4-quinone fragment by triazole linker. Furthermore, the enzymatic assay used has shown that these compounds are a good DT-diaphorase (NQO1) substrates as evidenced by increasing enzymatic conversion rates relative to that of streptonigrin. The anticancer activities of the hybrids were tested against a panel of human cell lines, like: melanoma, ovarian, breast, colon, and lung cancers. The structure-activity relationship showed that the activity depends on the type of 1,4-quinone moiety and the tumor cell lines used. It was also found that the anticancer effects were increasing against the cell line with higher NQO1 protein level, like: breast (T47D, MCF-7), colon (Caco-2), and lung (A549) cancers. The transcriptional activity of the gene encoding a proliferation marker (H3 histone), cell cycle regulators (p53 and p21) and apoptosis pathway (BCL-2 and BAX) for selected compounds were determined. The molecular docking study was carried out to examine the interaction between the hybrids and NQO1 enzyme. The computational simulation showed that the type of the 1,4-quinone moiety influences location of the compound in the active site of the enzyme. It is worth noting that the study of new hybrids of betulin as substrate for NQO1 protein may lead to new medical therapeutic applications in the future.


Asunto(s)
Antineoplásicos/farmacología , Diseño de Fármacos , Inhibidores Enzimáticos/farmacología , NAD(P)H Deshidrogenasa (Quinona)/antagonistas & inhibidores , Quinonas/farmacología , Triterpenos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Humanos , Simulación del Acoplamiento Molecular , Estructura Molecular , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , Quinonas/química , Relación Estructura-Actividad , Especificidad por Sustrato , Triterpenos/síntesis química , Triterpenos/química
12.
Pharmacol Rep ; 72(6): 1553-1561, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33063271

RESUMEN

BACKGROUND: A large body of research has focused on fluoroquinolones. It was shown that this class of synthetic antibiotics could possess antiviral activity as a broad range of anti-infective activities. Based on these findings, we have undertaken in silico molecular docking study to demonstrate, for the first time, the principle for the potential evidence pointing ciprofloxacin and moxifloxacin ability to interact with COVID-19 Main Protease. METHODS: In silico molecular docking and molecular dynamics techniques were applied to assess the potential for ciprofloxacin and moxifloxacin interaction with COVID-19 Main Protease (Mpro). Chloroquine and nelfinavir were used as positive controls. RESULTS: We revealed that the tested antibiotics exert strong capacity for binding to COVID-19 Main Protease (Mpro). According to the results obtained from the GOLD docking program, ciprofloxacin and moxifloxacin bind to the protein active site more strongly than the native ligand. When comparing with positive controls, a detailed analysis of the ligand-protein interactions shows that the tested fluoroquinolones exert a greater number of protein interactions than chloroquine and nelfinavir. Moreover, lower binding energy values obtained from KDEEP program were stated when compared to nelfinavir. CONCLUSIONS: Here, we have demonstrated for the first time that ciprofloxacin and moxifloxacin may interact with COVID-19 Main Protease (Mpro).


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Ciprofloxacina/farmacología , Proteasas 3C de Coronavirus/efectos de los fármacos , Moxifloxacino/farmacología , Antivirales/farmacología , Sitios de Unión , COVID-19/virología , Cloroquina/farmacología , Proteasas 3C de Coronavirus/metabolismo , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Nelfinavir/farmacología , Unión Proteica , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/enzimología
13.
Anticancer Res ; 40(11): 6151-6158, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33109552

RESUMEN

BACKGROUND/AIM: Glioma is the most malignant tumour of the human brain still lacking effective treatment modalities. Betulin, a pentacyclic triterpene abundantly found in the birch bark, has been shown to demonstrate interesting anti-cancer activity towards many cancer cells. We determined the effects of acetylenic synthetic betulin derivatives (ASBDs) as anti-tumour agents on glioma cells in vitro. MATERIALS AND METHODS: T98G and C6 glioma cell viability and proliferation were determined by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay and BrdU (bromo deoxyuridine) test, respectively. Cell-cycle progression and induction of apoptosis were investigated with flow cytometry. RESULTS: ASBDs significantly decreased glioma cell viability/survival and inhibited proliferation in a dose-dependent manner in vitro. Moreover, ASBDs were more cytotoxic than clinically used chemotherapeutics - temozolomide and cisplatin. CONCLUSION: ASBDs may be considered for further study as potent anti-tumour agents in glioma treatment.


Asunto(s)
Neoplasias Encefálicas/patología , Glioma/patología , Triterpenos/farmacología , Acetileno/química , Animales , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Cisplatino/farmacología , Humanos , Ratas , Temozolomida/farmacología , Triterpenos/química
14.
Biomolecules ; 10(8)2020 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-32764519

RESUMEN

Lupane-type pentacyclic triterpenes such as betulin and betulinic acid play an important role in the search for new therapies that would be effective in controlling viral infections. The aim of this study was the synthesis and evaluation of in vitro anti-HIV-1 activity for phosphate derivatives of 3-carboxyacylbetulin 3-5 as well as an in silico study of new compounds as potential ligands of the C-terminal domain of the HIV-1 capsid-spacer peptide 1 (CA-CTD-SP1) as a molecular target of HIV-1 maturation inhibitors. In vitro studies showed that 28-diethoxyphosphoryl-3-O-(3',3'-dimethylsuccinyl)betulin (compound 3), the phosphate analog of bevirimat (betulinic acid derivative, HIV-1 maturation inhibitor), has IC50 (half maximal inhibitory concentration) equal to 0.02 µM. Compound 3 inhibits viral replication at a level comparable to bevirimat and is also more selective (selectivity indices = 1250 and 967, respectively). Molecular docking was used to examine the probable interaction between the phosphate derivatives of 3-carboxyacylbetulin and C-terminal domain (CTD) of the HIV-1 capsid (CA)-spacer peptide 1 (SP1) fragment of Gag protein, designated as CTD-SP1. Compared with interactions between bevirimat (BVM) and the protein, an increased number of strong interactions between ligand 3 and the protein, generated by the phosphate group, were observed. These compounds might have the potential to also inhibit SARS-CoV2 proteins, in as far as the intrinsically imprecise docking scores suggest.


Asunto(s)
Fármacos Anti-VIH/síntesis química , Simulación del Acoplamiento Molecular , Triterpenos/química , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismo , Fármacos Anti-VIH/farmacología , Sitios de Unión , Fosfatos/química , Unión Proteica , Succinatos/química , Succinatos/farmacología , Triterpenos/farmacología , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/química
15.
Toxicol In Vitro ; 66: 104884, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32437906

RESUMEN

Mcl-1 is a potent antiapoptotic protein which is amplified in many human cancer, while microphthalmia associated transcription factor (MITF) promotes cell proliferation and has pro-survival role. The study was designed to examine whether the interaction between ciprofloxacin, one of the fluoroquinolones derivative, and MITF/Mcl-1 proteins affects C32 melanoma cells viability, proliferation and induces apoptosis. Preliminary molecular docking studies, Western blot analysis and fluorescence image cytometry were applied to demonstrate the signaling pathway underlying antiproliferative and proapoptotic effect of the drug. In silico analysis showed that ciprofloxacin possess the ability to form complexes with MITF and Mcl-1proteins. This phenomenon was confirmed by in vitro experimental model where the drug was found to decrease MITF and increase Mcl-1 expression at the protein level. Moreover, we found that ciprofloxacin decreases the cell viability and exerts anti-proliferative effect on amelanotic C32 melanoma cells. Image cytometric studies showed that the tested drug induced GSH depletion and apoptosis via intrinsic death pathway leading to DNA fragmentation. Analysis of the cell cycle distribution revealed that ciprofloxacin caused a block in the G2/M phase. This is the first study that characterized the role of MITF and Mcl-1 proteins in the antiproliferative and pro-apoptotic effect of ciprofloxacin towards amelanotic melanoma cells, opening the possibility to use of this drug as a potential agent for the treatment of melanoma.


Asunto(s)
Ciprofloxacina/farmacología , Melanoma Amelanótico/tratamiento farmacológico , Factor de Transcripción Asociado a Microftalmía/metabolismo , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Neoplasias Cutáneas/tratamiento farmacológico , Inhibidores de Topoisomerasa II/farmacología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Glutatión/metabolismo , Humanos , Melanoma Amelanótico/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/fisiología , Simulación del Acoplamiento Molecular , Unión Proteica , Neoplasias Cutáneas/metabolismo
16.
J Chromatogr Sci ; 58(4): 323-333, 2020 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-31942956

RESUMEN

Designing a new drug has recently become a very important topic that many researches are concerned with. This work relates to a newly synthesized betulin and betulone derivatives which have anticancer activity. Thin-layer chromatography was applied to evaluate the lipophilicity of these triterpenes in order to find the correlation between theoretically and experimentally calculated values of lipophilicity and the structure of compounds investigated. Moreover, the relationships between lipophilicity and pharmacokinetic parameters or anticancer activity were carried out. The similarity analysis was also done for the purpose to divide the compounds investigated into groups pointing which of these can meet the criteria for medicine substances. The cluster analysis showed the differences in the compounds grouping in relation which the values of lipophilicity are considered, i.e., calculated by computer software or obtained experimentally by use of TLC. Analysis clearly shows that those theoretically calculated values of lipophilicity are strongly connected to the structure of the compounds.


Asunto(s)
Antineoplásicos/farmacología , Cromatografía en Capa Delgada/métodos , Triterpenos/química , Triterpenos/farmacología , Antineoplásicos/química , Cromatografía en Capa Delgada/estadística & datos numéricos , Análisis por Conglomerados , Ensayos de Selección de Medicamentos Antitumorales , Células HL-60 , Humanos , Relación Estructura-Actividad Cuantitativa , Programas Informáticos
17.
Spectrochim Acta A Mol Biomol Spectrosc ; 230: 118038, 2020 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-31945713

RESUMEN

Depending on temperature, the 2-amino-2H-[1,2,3]triazolo[4,5-g]quinoline-4,9-dione forms two polymorphic structures, which differ in the spatial arrangement of the amine group. Both polymorphs were investigated using different experimental methods as well as various quantum chemical calculations in order to characterise their molecular structures. We used X-ray diffraction, FT-IR and NMR (solid-state and liquid) methods supplemented by the density functional theory (DFT) calculations, molecular electrostatic potential (MEP) and molecular orbital (HOMO, LUMO) analyses. It was found that the arrangement of the amine group affected the crystal structure, formation of H-bonds, the amine and carbonyl vibration bands in the FT-IR spectra, chemical shift of amine group in 15N CP/MAS NMR and chemical shift of amine protons in 1H NMR spectra. Both polymorphs were tested on anticancer activity against a panel of human cancer cell lines. Comparing the activity of both compounds showed that activity against MCF-7, MDA-MB-231 and Caco-2 lines depend on the arrangement of the amine group. Moreover, both polymorphs exhibited the highest activity against cell line with high NQO1 protein level, such as: A549, MCF-7 and Caco-2. The molecular docking was used to examine the probable interaction between the ligand of the tested polymorphs and the NQO1 enzyme. The analysis showed that ligands formed a hydrophobic interaction with tryptophan (Trp105), phenylalanine (Phe126 and Phe178) and tyrosine (Tyr 126).


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , Neoplasias/tratamiento farmacológico , Quinolinas/química , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Simulación del Acoplamiento Molecular , Estructura Molecular , NAD(P)H Deshidrogenasa (Quinona)/química , Neoplasias/patología , Células Tumorales Cultivadas
18.
Molecules ; 24(22)2019 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-31739496

RESUMEN

Natural 5,8-quinolinedione antibiotics exhibit a broad spectrum of activities including anticancer, antibacterial, antifungal, and antimalarial activities. The structure-activity research showed that the 5,8-quinolinedione scaffold is responsible for its biological effect. The subject of this review report is a presentation of the pharmacological activity of synthetic 5,8-quinolinedione compounds containing different groups at C-6 and/or C-7 positions. The relationship between the activity and the mechanism of action is included if these data have been included in the original literature. The review mostly covers the period between 2000 and 2019. Previously published literature data were used to present historical points.


Asunto(s)
Quinolinas/química , Estreptonigrina/química , Estructura Molecular , Relación Estructura-Actividad
19.
Int J Mol Sci ; 20(20)2019 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-31640137

RESUMEN

Since the beginning of the human immunodeficiency virus (HIV) epidemic, many groups of drugs characterized by diverse mechanisms of action have been developed, which can suppress HIV viremia. 3-O-(3',3'-Dimethylsuccinyl) betulinic acid, known as bevirimat (BVM), was the first compound in the class of HIV maturation inhibitors. In the present work, phosphate and phosphonate derivatives of 3-carboxyacylbetulinic acid were synthesized and evaluated for anti-HIV-1 activity. In vitro studies showed that 30-diethylphosphonate analog of BVM (compound 14a) has comparable effects to BVM (half maximal inhibitory concentrations (IC50) equal to 0.02 µM and 0.03 µM, respectively) and is also more selective (selectivity indices: 3450 and 967, respectively). To investigate the possible mechanism of antiviral effect of 14a, molecular docking was carried out on the C-terminal domain (CTD) of HIV-1 capsid (CA)-spacer peptide 1 (SP1) fragment of Gag protein, designated as CTD-SP1, which was described as a molecular target for maturation inhibitors. Compared with interactions between BVM and the protein, an increased number of strong interactions between ligand 14a and protein, generated by the phosphonate group, was observed.


Asunto(s)
Fármacos Anti-VIH/síntesis química , VIH-1/efectos de los fármacos , Compuestos Organofosforados/síntesis química , Succinatos/química , Triterpenos/química , Fármacos Anti-VIH/química , Fármacos Anti-VIH/farmacología , Proteínas de la Cápside/química , Proteínas de la Cápside/metabolismo , Línea Celular , VIH-1/metabolismo , Humanos , Modelos Moleculares , Simulación del Acoplamiento Molecular , Estructura Molecular , Compuestos Organofosforados/química , Compuestos Organofosforados/farmacología , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/química , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismo
20.
Eur J Med Chem ; 177: 302-315, 2019 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-31158746

RESUMEN

Betulin-1,4-quinone hybrids were obtain by connecting two active structures with a linker. This strategy allows for obtaining compounds showing a high biological activity and better bioavailability. In this research, synthesis, anticancer activity and molecular docking study of betulin-1,4-quinone hybrids are presented. Newly synthesized compounds were characterized by 1H, 13C NMR, IR and HR-MS. Hybrids were tested in vitro against a panel of human cell lines including glioblastoma, melanoma, breast and lung cancer. They showed a high cytotoxic activity depending on the type of 1,4-quinone moiety and the applied tumor cell lines. It was found that cytotoxic activities of the studied hybrids were increasing against the cell line with higher NQO1 protein level, like melanoma (C-32), breast (MCF-7) and lung (A-549) cancer. Selected hybrids were tested on the transcriptional activity of the gene encoding a proliferation marker (H3 histone), a cell cycle regulators (p53 and p21) and an apoptosis pathway (BCL-2 and BAX). The obtained results suggested that the tested compounds caused a mitochondrial apoptosis pathway in A549 and MCF-7 cell lines. The molecular docking was used to examine the probable interaction between the hybrids and human NAD[P]H-quinone oxidoreductase (NQO1) protein. The computational studies showed that the type of the 1,4-quinone moiety affected the location of the compound in the active site of the enzyme. Moreover, it was shown that an interaction of 1,4-quinone fragment with the hydrophobic matrix of the active site near Tyr128, Phe178, Trp105 and FAD cofactor could explain the observed increase of TP53 gene expression.


Asunto(s)
Antineoplásicos/farmacología , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , Quinonas/farmacología , Triterpenos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Antineoplásicos/metabolismo , Apoptosis/efectos de los fármacos , Betula/química , Dominio Catalítico , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Ensayos de Selección de Medicamentos Antitumorales , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Simulación del Acoplamiento Molecular , Estructura Molecular , NAD(P)H Deshidrogenasa (Quinona)/química , Unión Proteica , Quinonas/síntesis química , Quinonas/química , Quinonas/metabolismo , Relación Estructura-Actividad , Triterpenos/síntesis química , Triterpenos/química , Triterpenos/aislamiento & purificación , Triterpenos/metabolismo , Proteína p53 Supresora de Tumor/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA