Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
ACS Nano ; 18(35): 24004-24011, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39175442

RESUMEN

Key neuronal functions have been successfully replicated in various hardware systems. Noticeable examples are neuronal networks constructed from memristors, which emulate complex electrochemical biological dynamics such as the efficacy and plasticity of a neuron. Neurons are highly active cells, communicating with chemical and electrical stimuli, but also emit light. These so-called biophotons are suspected to be a complementary vehicle to transport information across the brain. Here, we show that a memristor also releases photons during its operation akin to the production of neuronal light. Critical attributes of biophotons, such as self-generation, stochasticity, spectral coverage, sparsity, and correlation with the neuron's electrical activity, are replicated by our solid-state approach. Importantly, our time-resolved analysis of the correlated current transport and photon activity shows that emission takes place within a nanometer-sized active area and relies on electrically induced single-to-few active electroluminescent centers excited with moderate voltage (<3 V). Our findings further extend the emulating capability of a memristor to encompass neuronal optical activity and allow to construct memristive atomic-scale devices capable of handling simultaneously electrons and photons as information carriers.


Asunto(s)
Luz , Neuronas , Fotones
2.
ACS Photonics ; 11(6): 2388-2396, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38911841

RESUMEN

Electrically connected and plasmonically enhanced molecular junctions combine the optical functionalities of high field confinement and enhancement (cavity function), and of high radiative efficiency (antenna function) with the electrical functionalities of molecular transport. Such combined optical and electrical probes have proven useful for the fundamental understanding of metal-molecule contacts and contribute to the development of nanoscale optoelectronic devices including ultrafast electronics and nanosensors. Here, we employ a self-assembled metal-molecule-metal junction with a nanoparticle bridge to investigate correlated fluctuations in conductance and tunneling-induced light emission at room temperature. Despite the presence of hundreds of molecules in the junction, the electrical conductance and light emission are both highly sensitive to atomic-scale fluctuations-a phenomenology reminiscent of picocavities observed in Raman scattering and of luminescence blinking from photoexcited plasmonic junctions. Discrete steps in conductance associated with fluctuating emission intensities through the multiple plasmonic modes of the junction are consistent with a finite number of randomly localized, point-like sources dominating the optoelectronic response. Contrasting with these microscopic fluctuations, the overall plasmonic and electronic functionalities of our devices feature long-term survival at room temperature and under an electrical bias of a few volts, allowing for measurements over several months.

3.
ACS Nano ; 18(24): 15905-15914, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38829860

RESUMEN

Nonlinear photoluminescence (N-PL) is a broadband photon emission arising from a nonequilibrium heated electron distribution generated at the surface of metallic nanostructures by ultrafast pulsed laser illumination. N-PL is sensitive to surface morphology, local electromagnetic field strength, and electronic band structure, making it relevant to probe optically excited nanoscale plasmonic systems. It also has been key to accessing the complex multiscale time dynamics ruling electron thermalization. Here, we show that plasmon-mediated N-PL emitted by a gold nanowire can be modified by an electrical architecture featuring a nanogap. Upon voltage activation, we observe that N-PL becomes dependent on the electrical transport dynamics and can thus be locally modulated. This finding brings an electrical leverage to externally control the photoluminescence generated from metal nanostructures and constitutes an asset for the development of emerging nanoscale interface devices managing photons and electrons.

4.
Nano Lett ; 24(25): 7564-7571, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38809695

RESUMEN

Photocurrents play a crucial role in various applications, including light detection, photovoltaics, and THz radiation generation. Despite the abundance of methods and materials for converting light into electrical signals, the use of metals in this context has been relatively limited. Nanostructures supporting surface plasmons in metals offer precise light manipulation and induce light-driven electron motion. Through the inverse design optimization of a gold nanostructure, we demonstrate enhanced volumetric, unidirectional, intense, and ultrafast photocurrents via a magneto-optical process derived from the inverse Faraday effect. This is achieved through fine-tuning the amplitude, polarization, and gradients in the local light field. The virtually instantaneous process allows dynamic photocurrent modulation by varying optical pulse duration, potentially yielding nanosources of intense, ultrafast, planar magnetic fields and frequency-tunable THz emission. These findings open avenues for ultrafast magnetic material manipulation and hold promise for nanoscale THz spectroscopy.

5.
Opt Express ; 30(10): 17517-17528, 2022 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-36221572

RESUMEN

We aim at controlling the spatial distribution of nonlinear photoluminescence in a shaped micrometer-size crystalline gold flake. Interestingly, the underlying surface plasmon modal landscape sustained by this mesoscopic structure can be advantageously used to generate nonlinear photoluminescence (nPL) in remote locations away from the excitation spot. By controlling the modal pattern, we show that the delocalized nonlinear photoluminescence intensity can be redistributed spatially. This is first accomplished by changing the polarization orientation of the pulsed laser excitation in order to select a subset of available surface plasmon modes within a continuum. We then propose a second approach to redistribute the nPL within the structure by implementing a phase control of the plasmon interference pattern arising from a coherent two-beam excitation. Control and engineering of the nonlinear photoluminescence spatial extension is a prerequisite for deploying the next generation of plasmonic-enabled integrated devices relying on hot carriers.

6.
Nanophotonics ; 11(18): 4197-4208, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36118961

RESUMEN

Electrically-contacted optical gap antennas are nanoscale interface devices enabling the transduction between photons and electrons. This new generation of device, usually constituted of metal elements (e.g. gold), captures visible to near infrared electromagnetic radiation and rectifies the incident energy in a direct-current (DC) electrical signal. However, light absorption by the metal may lead to additional thermal effects which need to be taken into account to understand the complete photo-response of the devices. The purpose of this communication is to discriminate the contribution of laser-induced thermo-electric effects in the photo-assisted electronic transport. We show case our analysis with the help of electromigrated devices.

7.
Nanotechnology ; 33(38)2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35700697

RESUMEN

We use europium doped single crystalline NaYF4nanorods for probing the electric and magnetic contributions to the local density of optical states (LDOS). Reciprocically, we determine intrinsic properties of the emitters (oscillator strength, quantum yield) by comparing their measured and simulated optical responses in front of a mirror. We first experimentally determine the specifications of the nanoprobe (orientation and oscillator strength of the electric and magnetic dipoles moments) and show significant orientation sensitivity of the branching ratios associated with electric and magnetic transitions. In a second part, we measure the modification of the LDOS in front of a gold mirror in a Drexhage's experiment. We discuss the role of the electric and magnetic LDOS on the basis of numerical simulations, taking into account the orientation of the dipolar emitters. We demonstrate that they behave like degenerated dipoles sensitive to polarized partial LDOS.

8.
Light Sci Appl ; 11(1): 78, 2022 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-35351848

RESUMEN

Memristive devices are an emerging new type of devices operating at the scale of a few or even single atoms. They are currently used as storage elements and are investigated for performing in-memory and neuromorphic computing. Amongst these devices, Ag/amorphous-SiOx/Pt memristors are among the most studied systems, with the electrically induced filament growth and dynamics being thoroughly investigated both theoretically and experimentally. In this paper, we report the observation of a novel feature in these devices: The appearance of new photoluminescent centers in SiOx upon memristive switching, and photon emission correlated with the conductance changes. This observation might pave the way towards an intrinsically memristive atomic scale light source with applications in neural networks, optical interconnects, and quantum communication.

9.
ACS Nano ; 15(8): 13351-13359, 2021 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-34308639

RESUMEN

Processing information with conventional integrated circuits remains beset by the interconnect bottleneck: circuits made of smaller active devices need longer and narrower interconnects, which have become the prime source of power dissipation and clock rate saturation. Optical interchip communication provides a fast and energy-saving option that still misses a generic on-chip optical information processing by interconnect-free and reconfigurable Boolean arithmetic logic units (ALU). Considering metal plasmons as a platform with dual optical and electronic compatibilities, we forge interconnect-free, ultracompact plasmonic Boolean logic gates and reconfigure them, at will, into computing ALU without any redesign nor cascaded circuitry. We tailor the plasmon mode landscape of a single 2.6 µm2 planar gold cavity and demonstrate the operation and facile reconfiguration of all 2-input logic gates. The potential for higher complexity of the same logic unit is shown by a multi-input excitation and a phase control to realize an arithmetic 2-bit adder.

10.
Opt Express ; 29(10): 15366-15381, 2021 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-33985237

RESUMEN

We show that plasmonic nanowire-nanoparticle systems can perform nonlinear wavelength and modal conversions and potentially serve as building blocks for signal multiplexing and novel trafficking modalities. When a surface plasmon excited by a pulsed laser beam propagates in a nanowire, it generates a localized broadband nonlinear continuum at the nanowire surface as well as at active locations defined by sites where nanoparticles are absorbed (enhancement sites). The local response may couple to new sets of propagating modes enabling a complex routing of optical signals through modal and spectral conversions. Different aspects influencing the optical signal conversions are presented, including the parameters defining the local formation of the continuum and the subsequent modal routing in the nanowire.

11.
Light Sci Appl ; 9: 50, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32257181

RESUMEN

Metamaterials are artificial materials made of subwavelength elementary cells that give rise to unexpected wave properties that do not exist naturally. However, these properties are generally achieved due to 3D patterning, which is hardly feasible at short wavelengths in the visible and near-infrared regions targeted by most photonic applications. To overcome this limitation, metasurfaces, which are the 2D counterparts of metamaterials, have emerged as promising platforms that are compatible with planar nanotechnologies and thus mass production, which platforms the properties of a metamaterial into a 2D sheet. In the linear regime, wavefront manipulation for lensing, holography, and polarization control has been achieved recently. Interest in metasurfaces operating in the nonlinear regime has also increased due to the ability of metasurfaces to efficiently convert incident light into harmonic frequencies with unusual polarization properties. However, to date, the nonlinear absorption of metasurfaces has been mostly ignored. Here, we demonstrate that plasmonic metasurfaces behave as saturable absorbers with modulation performances superior to the modulation performance of other 2D materials and exhibit unusual polarimetric nonlinear transfer functions. We quantify the link between saturable absorption, the plasmonic resonances of the unit cell and their distribution in a 2D metasurface, and finally provide a practical implementation by integrating the metasurfaces into a fiber laser cavity operating in pulsed regimes driven by the metasurface properties. As such, this work provides new perspectives on ultrathin nonlinear saturable absorbers for applications where tunable nonlinear transfer functions are needed, such as in ultrafast lasers or neuromorphic circuits.

12.
J Phys Chem B ; 123(9): 1931-1938, 2019 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-30715883

RESUMEN

In this contribution, we report that conformational changes of molecules that are often buried in a wide-distributed Gaussian distribution can be discerned by analyzing the dynamics of specific Raman lines. We investigate the pertinence of the auto- and cross-correlation functions applied to the dynamics of three Raman lines of an amino acid, the tryptophan. The cross-correlation between intensity and the Raman band is an indicator of the charge transfer during the diffusion limited reaction of tryptophan and the gold surface. The Péclet number Pe can provide a valuable indicator of the convective and/or diffusive features of each Raman band. Adsorption induced conformation changes can be identified using the autocorrelation of the multiples states within the Raman band centered at 1550 cm-1.


Asunto(s)
Triptófano/química , Oro/química , Nanopartículas del Metal/química , Conformación Molecular , Espectrometría Raman , Electricidad Estática
13.
Beilstein J Nanotechnol ; 9: 1964-1976, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30116688

RESUMEN

Background: Electrically controlled optical metal antennas are an emerging class of nanodevices enabling a bilateral transduction between electrons and photons. At the heart of the device is a tunnel junction that may either emit light upon injection of electrons or generate an electrical current when excited by a light wave. The current study explores a technological route for producing these functional units based upon the electromigration of metal constrictions. Results: We combine multiple nanofabrication steps to realize in-plane tunneling junctions made of two gold electrodes, separated by a sub-nanometer gap acting as the feedgap of an optical antenna. We electrically characterize the transport properties of the junctions in the light of the Fowler-Nordheim representation and the Simmons model for electron tunneling. We demonstrate light emission from the feedgap upon electron injection and show examples of how this nanoscale light source can be coupled to waveguiding structures. Conclusion: Electromigrated in-plane tunneling optical antennas feature interesting properties with their unique functionality enabling interfacing electrons and photons at the atomic scale and with the same device. This technology may open new routes for device-to-device communication and for interconnecting an electronic control layer to a photonic architecture.

14.
Appl Opt ; 57(21): 5914-5922, 2018 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-30118013

RESUMEN

Directional harmonic generation is an important property characterizing the ability of nonlinear optical antennas to diffuse the signal in a well-defined region of space. Herein, we show how sub-wavelength facets of an organic molecular mesowire crystal can be utilized to systematically vary the directionality of second-harmonic generation (SHG) in the forward-scattering geometry. We demonstrate this capability on crystalline diamonoanthraquinone (DAAQ) mesowires with sub-wavelength facets. We observed that the radial angles of the SHG emission can be tuned over a range of 130 deg. This angular variation arises due to spatially distributed nonlinear dipoles in the focal volume of the excitation as well as the geometrical cross section and facet orientation of the mesowire. Numerical simulations of the near-field excitation profile corroborate the role of the mesowire geometry in localizing the electric field. In addition to directional SHG from the mesowire, we experimentally observe optical waveguiding of the nonlinear two-photon excited fluorescence (TPEF). Interestingly, we observed that for a given pump excitation, the TPEF signal is isotropic and delocalized, whereas the SHG emission is directional and localized at the location of excitation. All the observed effects have direct implications not only in active nonlinear optical antennas but also in nonlinear signal processing.

15.
Nat Commun ; 9(1): 1992, 2018 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-29777104

RESUMEN

Initiated as a cable-replacement solution, short-range wireless power transfer has rapidly become ubiquitous in the development of modern high-data throughput networking in centimeter to meter accessibility range. Wireless technology is now penetrating a higher level of system integration for chip-to-chip and on-chip radiofrequency interconnects. However, standard CMOS integrated millimeter-wave antennas have typical size commensurable with the operating wavelength, and are thus an unrealistic solution for downsizing transmitters and receivers to the micrometer and nanometer scale. Herein, we demonstrate a light-in and electrical signal-out, on-chip wireless near-infrared link between a 220 nm optical antenna and a sub-nanometer rectifying antenna converting the transmitted optical energy into direct electrical current. The co-integration of subwavelength optical functional devices with electronic transduction offers a disruptive solution to interface photons and electrons at the nanoscale for on-chip wireless optical interconnects.

16.
Opt Express ; 25(8): 9138-9149, 2017 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-28437988

RESUMEN

Surface plasmon modes propagating in metal nanowires are conveniently excited by focusing a laser beam on one extremity of the nanowire. We find that the precise positioning of the nanowire inside the focal region drastically influences the excitation efficiency of the different SPP modes sustained by the plasmonic waveguide. We demonstrate a spatially selective excitation of bound and leaky surface plasmon modes with excitation maps that strongly depend on the orientation of the incident linear polarization. We discuss this modal selection by considering the inhomogeneous distribution of the field components inside the focus. Our finding provides a way to discriminate the effective indices of the modes offering thus an increased coupling agility for future nanowire-based plasmonic architectures.

17.
Phys Chem Chem Phys ; 19(1): 458-466, 2016 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-27905596

RESUMEN

In this contribution, we provide new insights on the temporal fluctuations of surface enhanced Raman spectra (SERS) of large single molecules such as proteins. Because they can only fit partly into small active volume, SERS analysis is referred to spectral pointillism where only protein subdomains are shined and the whole protein landscape is built from the dynamics of successive individual spectra. By applying our approach on bovine serum albumin, we show that single protein subdomains are mostly comprised of three distinct amino acids. Surface amino acids such as lysine are preferentially detected in the open form of the protein. The investigation of the tryptophan Fermi doublet in the single protein regime is highly instructive on the protein conformation. We finally demonstrate that spectral pointillism enables to correlate individual amino acids with structural information.


Asunto(s)
Aminoácidos/química , Albúmina Sérica Bovina/química , Albúmina Sérica Bovina/metabolismo , Triptófano/química , Triptófano/metabolismo , Animales , Bovinos , Conformación Proteica , Espectrometría Raman
18.
Nanoscale ; 8(30): 14573-9, 2016 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-27427159

RESUMEN

A rigorous theory of photon emission generated by inelastic electron tunnelling inside the gap of plasmonic nanoantennas is developed. The disappointingly low efficiency of the electrical excitation of surface plasmon polaritons in these structures can be increased by orders of magnitude when a resonant tunnelling structure is incorporated inside the gap. A resonant tunnelling assisted surface plasmon emitter may become a key element in future electrically-driven plasmonic nanocircuits.

19.
Sci Rep ; 6: 20383, 2016 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-26833130

RESUMEN

Surface enhanced Raman scattering (SERS) spectroscopy becomes increasingly used in biosensors for its capacity to detect and identify single molecules. In practice, a large number of SERS spectra are acquired and reliable ranking methods are thus essential for analysing all these data. Supervised classification strategies, which are the most effective methods, are usually applied but they require pre-determined models or classes. In this work, we propose to sort SERS spectra in unknown groups with an alternative strategy called Fourier polar representation. This non-fitting method based on simple Fourier sine and cosine transforms produces a fast and graphical representation for sorting SERS spectra with quantitative information. The reliability of this method was first investigated theoretically and numerically. Then, its performances were tested on two concrete biological examples: first with single amino-acid molecule (cysteine) and then with a mixture of three distinct odorous molecules. The benefits of this Fourier polar representation were highlighted and compared to the well-established statistical principal component analysis method.


Asunto(s)
Espectrometría Raman , Algoritmos , Técnicas Biosensibles , Cisteína/química , Modelos Teóricos , Método de Montecarlo , Odorantes/análisis , Espectrometría Raman/métodos
20.
Phys Rev Lett ; 115(19): 197401, 2015 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-26588413

RESUMEN

Remote excitation and emission of two-photon luminescence and second-harmonic generation are observed in micrometer long gold rod optical antennas upon local illumination with a tightly focused near-infrared femtosecond laser beam. We show that these nonlinear radiations are emitted from the entire antenna and the measured far-field angular patterns bear the information regarding the nature and origins of the respective nonlinear processes. We demonstrate that the nonlinear responses are locally induced by a propagating surface plasmon at the excitation frequency, enabling thereby a polariton-mediated spatial tailoring and design of coherent and incoherent nonlinear responses.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA