Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 189
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
2.
Bioessays ; : e2400150, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39302180

RESUMEN

In plants, robust defense depends on the efficient and resilient trafficking supply chains to the site of pathogen attack. Though the importance of intracellular trafficking in plant immunity has been well established, a lack of clarity remains regarding the contribution of the various trafficking pathways in transporting immune-related proteins. We have recently identified a trans-Golgi network protein, TGN-ASSOCIATED PROTEIN 1 (TGNap1), which functionally links post-Golgi vesicles with the cytoskeleton to transport immunity-related proteins in the model plant species Arabidopsis thaliana. We propose new hypotheses on the various functional implications of TGNap1 and then elaborate on the surprising heterogeneity of TGN vesicles during immunity revealed by the discovery of TGNap1 and other TGN-associated proteins in recent years.

3.
Nat Commun ; 15(1): 5804, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987268

RESUMEN

Environmental and physiological situations can challenge the balance between protein synthesis and folding capacity of the endoplasmic reticulum (ER) and cause ER stress, a potentially lethal condition. The unfolded protein response (UPR) restores ER homeostasis or actuates programmed cell death (PCD) when ER stress is unresolved. The cell fate determination mechanisms of the UPR are not well understood, especially in plants. Here, we integrate genetics and ER stress profiling with natural variation and quantitative trait locus analysis of 350 natural accessions of the model species Arabidopsis thaliana. Our analyses implicate a single nucleotide polymorphism to the loss of function of the general PCD regulator BON-ASSOCIATED PROTEIN2 (BAP2) in UPR outcomes. We establish that ER stress-induced BAP2 expression is antagonistically regulated by the UPR master regulator, inositol-requiring enzyme 1 (IRE1), and that BAP2 controls adaptive UPR amplitude in ER stress and ignites pro-death mechanisms in conditions of UPR insufficiency.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Estrés del Retículo Endoplásmico , Regulación de la Expresión Génica de las Plantas , Respuesta de Proteína Desplegada , Apoptosis/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico/genética , Polimorfismo de Nucleótido Simple , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Sitios de Carácter Cuantitativo , Respuesta de Proteína Desplegada/genética
4.
Nat Commun ; 15(1): 6008, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39019917

RESUMEN

The plant endoplasmic reticulum (ER) contacts heterotypic membranes at membrane contact sites (MCSs) through largely undefined mechanisms. For instance, despite the well-established and essential role of the plant ER-chloroplast interactions for lipid biosynthesis, and the reported existence of physical contacts between these organelles, almost nothing is known about the ER-chloroplast MCS identity. Here we show that the Arabidopsis ER membrane-associated VAP27 proteins and the lipid-binding protein ORP2A define a functional complex at the ER-chloroplast MCSs. Specifically, through in vivo and in vitro association assays, we found that VAP27 proteins interact with the outer envelope membrane (OEM) of chloroplasts, where they bind to ORP2A. Through lipidomic analyses, we established that VAP27 proteins and ORP2A directly interact with the chloroplast OEM monogalactosyldiacylglycerol (MGDG), and we demonstrated that the loss of the VAP27-ORP2A complex is accompanied by subtle changes in the acyl composition of MGDG and PG. We also found that ORP2A interacts with phytosterols and established that the loss of the VAP27-ORP2A complex alters sterol levels in chloroplasts. We propose that, by interacting directly with OEM lipids, the VAP27-ORP2A complex defines plant-unique MCSs that bridge ER and chloroplasts and are involved in chloroplast lipid homeostasis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Cloroplastos , Retículo Endoplásmico , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Cloroplastos/metabolismo , Retículo Endoplásmico/metabolismo , Galactolípidos/metabolismo , Metabolismo de los Lípidos , Lipidómica , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Unión Proteica , Receptores de Esteroides/metabolismo , Receptores de Esteroides/genética
5.
Methods Mol Biol ; 2792: 125-129, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38861083

RESUMEN

Photosynthesis requires CO2 as the carbon source, and the levels of ambient CO2 determine the oxygenation or carboxylation of Ribulose-1,5-bisphosphate (RuBP) by RuBP carboxylase/oxygenase (Rubisco). Low CO2 levels lead to oxygenation and result in photorespiration, which ultimately causes a reduction in net carbon assimilation through photosynthesis. Therefore, an increased understanding of plant responses to low CO2 contributes to the knowledge of how plants circumvent the harmful effects of photorespiration. Methods for elevating CO2 above ambient concentrations are often achieved by external sources of CO2, but reducing CO2 below the ambient value is much more difficult as CO2 gas needs to be scrubbed from the atmosphere rather than added to it. Here, we describe a low-cost method of achieving low CO2 conditions for Arabidopsis growth.


Asunto(s)
Arabidopsis , Dióxido de Carbono , Fotosíntesis , Dióxido de Carbono/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Atmósfera/química , Ribulosa-Bifosfato Carboxilasa/metabolismo
6.
Biochem Soc Trans ; 52(2): 831-848, 2024 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-38600022

RESUMEN

Homeostasis of the endoplasmic reticulum (ER) is critical for growth, development, and stress responses. Perturbations causing an imbalance in ER proteostasis lead to a potentially lethal condition known as ER stress. In ER stress situations, cell-fate decisions either activate pro-life pathways that reestablish homeostasis or initiate pro-death pathways to prevent further damage to the organism. Understanding the mechanisms underpinning cell-fate decisions in ER stress is critical for crop development and has the potential to enable translation of conserved components to ER stress-related diseases in metazoans. Post-translational modifications (PTMs) of proteins are emerging as key players in cell-fate decisions in situations of imbalanced ER proteostasis. In this review, we address PTMs orchestrating cell-fate decisions in ER stress in plants and provide evidence-based perspectives for where future studies may focus to identify additional PTMs involved in ER stress management.


Asunto(s)
Arabidopsis , Estrés del Retículo Endoplásmico , Procesamiento Proteico-Postraduccional , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Retículo Endoplásmico/metabolismo
7.
Nat Rev Genet ; 25(7): 513-525, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38499769

RESUMEN

Endoplasmic reticulum (ER) stress is a potentially lethal condition that is induced by the abnormal accumulation of unfolded or misfolded secretory proteins in the ER. In eukaryotes, ER stress is managed by the unfolded protein response (UPR) through a tightly regulated, yet highly dynamic, reprogramming of gene transcription. Although the core principles of the UPR are similar across eukaryotes, unique features of the plant UPR reflect the adaptability of plants to their ever-changing environments and the need to balance the demands of growth and development with the response to environmental stressors. The past decades have seen notable progress in understanding the mechanisms underlying ER stress sensing and signalling transduction pathways, implicating the UPR in the effects of physiological and induced ER stress on plant growth and crop yield. Facilitated by sequencing technologies and advances in genetic and genomic resources, recent efforts have driven the discovery of transcriptional regulators and elucidated the mechanisms that mediate the dynamic and precise gene regulation in response to ER stress at the systems level.


Asunto(s)
Estrés del Retículo Endoplásmico , Regulación de la Expresión Génica de las Plantas , Plantas , Respuesta de Proteína Desplegada , Estrés del Retículo Endoplásmico/genética , Respuesta de Proteína Desplegada/genética , Plantas/genética , Plantas/metabolismo , Transducción de Señal/genética , Retículo Endoplásmico/metabolismo
8.
J Cell Biol ; 223(6)2024 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-38551496

RESUMEN

Phytopathogens cause plant diseases that threaten food security. Unlike mammals, plants lack an adaptive immune system and rely on their innate immune system to recognize and respond to pathogens. Plant response to a pathogen attack requires precise coordination of intracellular traffic and signaling. Spatial and/or temporal defects in coordinating signals and cargo can lead to detrimental effects on cell development. The role of intracellular traffic comes into a critical focus when the cell sustains biotic stress. In this review, we discuss the current understanding of the post-immune activation logistics of plant defense. Specifically, we focus on packaging and shipping of defense-related cargo, rerouting of intracellular traffic, the players enabling defense-related traffic, and pathogen-mediated subversion of these pathways. We highlight the roles of the cytoskeleton, cytoskeleton-organelle bridging proteins, and secretory vesicles in maintaining pathways of exocytic defense, acting as sentinels during pathogen attack, and the necessary elements for building the cell wall as a barrier to pathogens. We also identify points of convergence between mammalian and plant trafficking pathways during defense and highlight plant unique responses to illustrate evolutionary adaptations that plants have undergone to resist biotic stress.


Asunto(s)
Inmunidad Innata , Plantas , Animales , Citoesqueleto/metabolismo , Mamíferos , Orgánulos/metabolismo , Plantas/inmunología , Plantas/metabolismo , Transducción de Señal
9.
Methods Mol Biol ; 2772: 261-272, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38411820

RESUMEN

Proteotoxic stress of the endoplasmic reticulum (ER) is a potentially lethal condition that ensues when the biosynthetic capacity of the ER is overwhelmed. A sophisticated and largely conserved signaling, known as the unfolded protein response (UPR), is designed to monitor and alleviate ER stress. In plants, the emerging picture of gene regulation by the UPR now appears to be more complex than ever before, requiring multi-omics-enabled network-level approaches to be untangled. In the past decade, with an increasing access and decreasing costs of next-generation sequencing (NGS) and high-throughput protein-DNA interaction (PDI) screening technologies, multitudes of global molecular measurements, known as omics, have been generated and analyzed by the research community to investigate the complex gene regulation of plant UPR. In this chapter, we present a comprehensive catalog of omics resources at different molecular levels (transcriptomes, protein-DNA interactomes, and networks) along with the introduction of key concepts in experimental and computational tools in data generation and analyses. This chapter will serve as a starting point for both experimentalists and bioinformaticians to explore diverse omics datasets for their biological questions in the plant UPR, with likely applications also in other species for conserved mechanisms.


Asunto(s)
Estrés del Retículo Endoplásmico , Multiómica , Estrés del Retículo Endoplásmico/genética , Respuesta de Proteína Desplegada/genética , Retículo Endoplásmico , ADN
10.
Methods Mol Biol ; 2772: 239-247, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38411818

RESUMEN

The unfolded protein response (UPR) is a highly regulated signaling pathway that is largely conserved across eukaryotes. It is essential for cell homeostasis under environmental and physiological conditions that perturb the protein folding in the endoplasmic reticulum (ER). Arabidopsis is one of the outstanding multicellular model systems in which to investigate the UPR. Here, we described a protocol to induce the UPR in plants, specifically Arabidopsis, and to estimate their ability to cope with ER stress through the quantification of physiological parameters.


Asunto(s)
Arabidopsis , Respuesta de Proteína Desplegada , Estrés del Retículo Endoplásmico , Retículo Endoplásmico , Eucariontes
11.
New Phytol ; 242(2): 809-824, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38417454

RESUMEN

Plant glycosyl hydrolases (GHs) play a crucial role in selectively breaking down carbohydrates and glycoconjugates during various cellular processes, such as reserve mobilization, pathogen defense, and modification/disassembly of the cell wall. In this study, we examined the distribution of GH genes in the Archaeplastida supergroup, which encompasses red algae, glaucophytes, and green plants. We identified that the GH repertoire expanded from a few tens of genes in early archaeplastidians to over 400 genes in modern angiosperms, spanning 40 GH families in land plants. Our findings reveal that major evolutionary transitions were accompanied by significant changes in the GH repertoire. Specifically, we identified at least 23 GH families acquired by green plants through multiple horizontal gene transfer events, primarily from bacteria and fungi. We found a significant shift in the subcellular localization of GH activity during green plant evolution, with a marked increase in extracellular-targeted GH proteins associated with the diversification of plant cell wall polysaccharides and defense mechanisms against pathogens. In conclusion, our study sheds light on the macroevolutionary processes that have shaped the GH repertoire in plants, highlighting the acquisition of GH families through horizontal transfer and the role of GHs in plant adaptation and defense mechanisms.


Asunto(s)
Transferencia de Gen Horizontal , Hidrolasas , Humanos , Filogenia , Transferencia de Gen Horizontal/genética , Evolución Molecular , Plantas/genética
12.
J Exp Bot ; 75(1): 45-59, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37715992

RESUMEN

The endoplasmic reticulum (ER) is a dynamic organelle that is amenable to major restructuring. Introduction of recombinant ER-membrane-resident proteins that form homo oligomers is a known method of inducing ER proliferation: interaction of the proteins with each other alters the local structure of the ER network, leading to the formation large aggregations of expanded ER, sometimes leading to the formation of organized smooth endoplasmic reticulum (OSER). However, these membrane structures formed by ER proliferation are poorly characterized and this hampers their potential development for plant synthetic biology. Here, we characterize a range of ER-derived membranous compartments in tobacco and show how the nature of the polyproteins introduced into the ER membrane affect the morphology of the final compartment. We show that a cytosol-facing oligomerization domain is an essential component for compartment formation. Using fluorescence recovery after photobleaching, we demonstrate that although the compartment retains a connection to the ER, a diffusional barrier exists to both the ER and the cytosol associated with the compartment. Using quantitative image analysis, we also show that the presence of the compartment does not disrupt the rest of the ER network. Moreover, we demonstrate that it is possible to recruit a heterologous, bacterial enzyme to the compartment, and for the enzyme to accumulate to high levels. Finally, transgenic Arabidopsis constitutively expressing the compartment-forming polyproteins grew and developed normally under standard conditions.


Asunto(s)
Arabidopsis , Poliproteínas , Poliproteínas/análisis , Poliproteínas/metabolismo , Proteínas de la Membrana/metabolismo , Retículo Endoplásmico/metabolismo , Membranas Intracelulares/metabolismo , Arabidopsis/metabolismo
13.
Plant J ; 117(5): 1543-1557, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38100514

RESUMEN

Mutant populations are crucial for functional genomics and discovering novel traits for crop breeding. Sorghum, a drought and heat-tolerant C4 species, requires a vast, large-scale, annotated, and sequenced mutant resource to enhance crop improvement through functional genomics research. Here, we report a sorghum large-scale sequenced mutant population with 9.5 million ethyl methane sulfonate (EMS)-induced mutations that covered 98% of sorghum's annotated genes using inbred line BTx623. Remarkably, a total of 610 320 mutations within the promoter and enhancer regions of 18 000 and 11 790 genes, respectively, can be leveraged for novel research of cis-regulatory elements. A comparison of the distribution of mutations in the large-scale mutant library and sorghum association panel (SAP) provides insights into the influence of selection. EMS-induced mutations appeared to be random across different regions of the genome without significant enrichment in different sections of a gene, including the 5' UTR, gene body, and 3'-UTR. In contrast, there were low variation density in the coding and UTR regions in the SAP. Based on the Ka /Ks value, the mutant library (~1) experienced little selection, unlike the SAP (0.40), which has been strongly selected through breeding. All mutation data are publicly searchable through SorbMutDB (https://www.depts.ttu.edu/igcast/sorbmutdb.php) and SorghumBase (https://sorghumbase.org/). This current large-scale sequence-indexed sorghum mutant population is a crucial resource that enriched the sorghum gene pool with novel diversity and a highly valuable tool for the Poaceae family, that will advance plant biology research and crop breeding.


Asunto(s)
Sorghum , Sorghum/genética , Genética Inversa , Fitomejoramiento , Mutación , Fenotipo , Grano Comestible/genética , Metanosulfonato de Etilo/farmacología , Genoma de Planta/genética
14.
Nat Commun ; 14(1): 6357, 2023 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-37821453

RESUMEN

Plant immunity depends on the secretion of antimicrobial proteins, which occurs through yet-largely unknown mechanisms. The trans-Golgi network (TGN), a hub for intracellular and extracellular trafficking pathways, and the cytoskeleton, which is required for antimicrobial protein secretion, are emerging as pathogen targets to dampen plant immunity. In this work, we demonstrate that tgnap1-2, a loss-of-function mutant of Arabidopsis TGNap1, a TGN-associated and microtubule (MT)-binding protein, is susceptible to Pseudomonas syringae (Pst DC3000). Pst DC3000 infected tgnap1-2 is capable of mobilizing defense pathways, accumulating salicylic acid (SA), and expressing antimicrobial proteins. The susceptibility of tgnap1-2 is due to a failure to efficiently transport antimicrobial proteins to the apoplast in a partially MT-dependent pathway but independent from SA and is additive to the pathogen-antagonizing MIN7, a TGN-associated ARF-GEF protein. Therefore, our data demonstrate that plant immunity relies on TGNap1 for secretion of antimicrobial proteins, and that TGNap1 is a key immunity element that functionally links secretion and cytoskeleton in SA-independent pathogen responses.


Asunto(s)
Antiinfecciosos , Proteínas de Arabidopsis , Arabidopsis , Proteínas Portadoras/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Antiinfecciosos/metabolismo , Ácido Salicílico/metabolismo , Microtúbulos/metabolismo , Pseudomonas syringae/fisiología , Enfermedades de las Plantas , Regulación de la Expresión Génica de las Plantas
15.
Nat Plants ; 9(8): 1333-1346, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37563456

RESUMEN

Excessive accumulation of misfolded proteins in the endoplasmic reticulum (ER) causes ER stress, which is an underlying cause of major crop losses and devastating human conditions. ER proteostasis surveillance is mediated by the conserved master regulator of the unfolded protein response (UPR), Inositol Requiring Enzyme 1 (IRE1), which determines cell fate by controlling pro-life and pro-death outcomes through as yet largely unknown mechanisms. Here we report that Arabidopsis IRE1 determines cell fate in ER stress by balancing the ubiquitin-proteasome system (UPS) and UPR through the plant-unique E3 ligase, PHOSPHATASE TYPE 2CA (PP2CA)-INTERACTING RING FINGER PROTEIN 1 (PIR1). Indeed, PIR1 loss leads to suppression of pro-death UPS and the lethal phenotype of an IRE1 loss-of-function mutant in unresolved ER stress in addition to activating pro-survival UPR. Specifically, in ER stress, PIR1 loss stabilizes ABI5, a basic leucine zipper (bZIP) transcription factor, that directly activates expression of the critical UPR regulator gene, bZIP60, triggering transcriptional cascades enhancing pro-survival UPR. Collectively, our results identify new cell fate effectors in plant ER stress by showing that IRE1's coordination of cell death and survival hinges on PIR1, a key pro-death component of the UPS, which controls ABI5, a pro-survival transcriptional activator of bZIP60.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Humanos , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Estrés Proteotóxico , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Arabidopsis/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Retículo Endoplásmico/metabolismo
16.
Plant J ; 116(2): 541-557, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37496362

RESUMEN

The plant cell boundary generally comprises constituents of the primary and secondary cell wall (CW) that are deposited sequentially during development. Although it is known that the CW acts as a barrier against phytopathogens and undergoes modifications to limit their invasion, the extent, sequence, and requirements of the pathogen-induced modifications of the CW components are still largely unknown, especially at the level of the polysaccharide fraction. To address this significant knowledge gap, we adopted the compatible Pseudomonas syringae-Arabidopsis thaliana system. We found that, despite systemic signaling actuation, Pseudomonas infection leads only to local CW modifications. Furthermore, by utilizing a combination of CW and immune signaling-deficient mutants infected with virulent or non-virulent bacteria, we demonstrated that the pathogen-induced changes in CW polysaccharides depend on the combination of pathogen virulence and the host's ability to mount an immune response. This results in a pathogen-driven accumulation of CW hexoses, such as galactose, and an immune signaling-dependent increase in CW pentoses, mainly arabinose, and xylose. Our analyses of CW changes during disease progression also revealed a distinct spatiotemporal pattern of arabinogalactan protein (AGP) deposition and significant modifications of rhamnogalacturonan sidechains. Furthermore, genetic analyses demonstrated a critical role of AGPs, specifically of the Arabinoxylan Pectin Arabinogalactan Protein1, in limiting pathogen growth. Collectively, our results provide evidence for the actuation of significant remodeling of CW polysaccharides in a compatible host-pathogen interaction, and, by identifying AGPs as critical elements of the CW in plant defense, they pinpoint opportunities to improve plants against diverse pathogens.

17.
Plant J ; 116(2): 360-374, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37395650

RESUMEN

Mixed-linkage glucan (MLG) is a component of the cell wall (CW) of grasses and is composed of glucose monomers linked by ß-1,3 and ß-1,4 bonds. MLG is believed to have several biological functions, such as the mobilizable storage of carbohydrates and structural support of the CW. The extracellular levels of MLG are largely controlled by rates of synthesis mediated by cellulose synthase-like (CSL) enzymes, and turnover by lichenases. Economically important crops like sorghum accumulate MLG to variable levels during development. While in sorghum, like other grasses, there is one major MLG synthase (CSLF6), the identity of lichenases is yet unknown. To fill this gap, we identified three sorghum lichenases (SbLCH1-3) and characterized them in leaves in relation to the expression of SbCSLF6, and the abundance of MLG and starch. We established that SbLCH1-3 are secreted to the apoplast, consistent with a role of degrading MLG extracellularly. Furthermore, while SbCSLF6 expression was associated with cell development, the SbLCH genes exhibited distinct development-, cell-type-specific and diel-regulated expression. Therefore, our study identifies three functional sorghum MLG lichenases and highlights that MLG accumulation in sorghum leaves is likely controlled by the activity of lichenases that tune MLG levels, possibly to suit distinct cell and developmental needs in planta. These findings have important implications for improving the growth, yield, and composition of sorghum as a feedstock.


Asunto(s)
Glucanos , Sorghum , Glucanos/metabolismo , Sorghum/genética , Sorghum/metabolismo , Poaceae/metabolismo , Grano Comestible/metabolismo , Almidón/metabolismo , Pared Celular/metabolismo
18.
Plant J ; 115(2): 386-397, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37010739

RESUMEN

Carbonic anhydrases (CAs) are ubiquitous enzymes that accelerate the reversible conversion of CO2 to HCO3 - . The Arabidopsis genome encodes members of the α-, ß- and γ-CA families, and it has been hypothesized that ßCA activity has a role in photosynthesis. In this work, we tested this hypothesis by characterizing the two plastidial ßCAs, ßCA1 and ßCA5, in physiological conditions of growth. We conclusively established that both proteins are localized in the chloroplast stroma and that the loss of ßCA5 induced the expression of ßCA1, supporting the existence of regulatory mechanisms to control the expression of stromal ßCAs. We also established that ßCA1 and ßCA5 have markedly different enzymatic kinetics and physiological relevance. Specifically, we found that ßCA5 had a first-order rate constant ~10-fold lower than ßCA1, and that the loss of ßCA5 is detrimental to growth and could be rescued by high CO2 . Furthermore, we established that, while a ßCA1 mutation showed near wild-type growth and no significant impact on photosynthetic efficiency, the loss of ßCA5 markedly disrupted photosynthetic efficiency and light-harvesting capacity at ambient CO2 . Therefore, we conclude that in physiological autotrophic growth, the loss of the more highly expressed ßCA1 does not compensate for the loss of a less active ßCA5, which in turn is involved in growth and photosynthesis at ambient CO2 levels. These results lend support to the hypothesis that, in Arabidopsis,ßCAs have non-overlapping roles in photosynthesis and identify a critical activity of stromal ßCA5 and a dispensable role for ßCA1.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Anhidrasas Carbónicas , Arabidopsis/metabolismo , Anhidrasas Carbónicas/genética , Anhidrasas Carbónicas/metabolismo , Dióxido de Carbono/metabolismo , Fotosíntesis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
19.
Curr Biol ; 33(9): 1778-1786.e5, 2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-36963384

RESUMEN

Nutrient sensing and signaling are essential for adjusting growth and development to available resources. Deprivation of the essential mineral phosphorus (P) inhibits root growth.1 The molecular processes that sense P limitation to trigger early root growth inhibition are not known yet. Target of rapamycin (TOR) kinase is a central regulatory hub in eukaryotes to adapt growth to internal and external nutritional cues.2,3 How nutritional signals are transduced to TOR to control plant growth remains unclear. Here, we identify Arabidopsis-root-specific kinase 1 (ARSK1), which attenuates initial root growth inhibition in response to P limitation. We demonstrate that ARSK1 phosphorylates and stabilizes the regulatory-associated protein of TOR 1B (RAPTOR1B), a component of the TOR complex 1, to adjust root growth to P availability. These findings uncover signaling components acting upstream of TOR to balance growth to P availability.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fosfatos/metabolismo , Transducción de Señal/fisiología , Sirolimus/farmacología , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo
20.
Methods Mol Biol ; 2557: 39-51, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36512208

RESUMEN

The Golgi apparatus has essential roles in all eukaryotic cells, and its importance in plants is further exemplified by a critical role in building a cellulosic cell wall. The Golgi apparatus houses numerous cell wall-synthesizing or cell wall-modifying enzymes to generate the complex cell wall structure. However, several putative cell wall biosynthetic candidates await characterization, which requires verification of the subcellular localization and enzymatic products. Here, we describe detailed methods to analyze the localization of proteins that are transiently produced in tobacco leaves or stably produced in transgenic plants, by confocal microscopy using fluorescent-tagged proteins along with known Golgi markers or the trafficking inhibitor brefeldin A. We also detail a procedure to analyze the enzymatic products through antibody-based immunoblotting after cell wall enrichment.


Asunto(s)
Pared Celular , Aparato de Golgi , Inmunohistoquímica , Aparato de Golgi/metabolismo , Pared Celular/metabolismo , Brefeldino A/farmacología , Brefeldino A/metabolismo , Microscopía Confocal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA