Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 582
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Crit Care ; 28(1): 310, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39294653

RESUMEN

BACKGROUND: During mechanical ventilation, post-insufflation diaphragm contractions (PIDCs) are non-physiologic and could be injurious. PIDCs could be frequent during reverse-triggering, where diaphragm contractions follow the ventilator rhythm. Whether PIDCs happens with different modes of assisted ventilation is unknown. In mechanically ventilated patients with hypoxemic respiratory failure, we aimed to examine whether PIDCs are associated with ventilator settings, patients' characteristics or both. METHODS: One-hour recordings of diaphragm electromyography (EAdi), airway pressure and flow were collected once per day for up to five days from intubation until full recovery of diaphragm activity or death. Each breath was classified as mandatory (without-reverse-triggering), reverse-triggering, or patient triggered. Reverse triggering was further subclassified according to EAdi timing relative to ventilator cycle or reverse triggering leading to breath-stacking. EAdi timing (onset, offset), peak and neural inspiratory time (Tineuro) were measured breath-by-breath and compared to the ventilator expiratory time. A multivariable logistic regression model was used to investigate factors independently associated with PIDCs, including EAdi timing, amplitude, Tineuro, ventilator settings and APACHE II. RESULTS: Forty-seven patients (median[25%-75%IQR] age: 63[52-77] years, BMI: 24.9[22.9-33.7] kg/m2, 49% male, APACHE II: 21[19-28]) contributed 2 ± 1 recordings each, totaling 183,962 breaths. PIDCs occurred in 74% of reverse-triggering, 27% of pressure support breaths, 21% of assist-control breaths, 5% of Neurally Adjusted Ventilatory Assist (NAVA) breaths. PIDCs were associated with higher EAdi peak (odds ratio [OR][95%CI] 1.01[1.01;1.01], longer Tineuro (OR 37.59[34.50;40.98]), shorter ventilator inspiratory time (OR 0.27[0.24;0.30]), high peak inspiratory flow (OR 0.22[0.20;0.26]), and small tidal volumes (OR 0.31[0.25;0.37]) (all P ≤ 0.008). NAVA was associated with absence of PIDCs (OR 0.03[0.02;0.03]; P < 0.001). Reverse triggering was characterized by lower EAdi peak than breaths triggered under pressure support and associated with small tidal volume and shorter set inspiratory time than breaths triggered under assist-control (all P < 0.05). Reverse triggering leading to breath stacking was characterized by higher peak EAdi and longer Tineuro and associated with small tidal volumes compared to all other reverse-triggering phenotypes (all P < 0.05). CONCLUSIONS: In critically ill mechanically ventilated patients, PIDCs and reverse triggering phenotypes were associated with potentially modifiable factors, including ventilator settings. Proportional modes like NAVA represent a solution abolishing PIDCs.


Asunto(s)
Diafragma , Respiración Artificial , Humanos , Masculino , Persona de Mediana Edad , Diafragma/fisiopatología , Respiración Artificial/métodos , Respiración Artificial/efectos adversos , Femenino , Anciano , Electromiografía/métodos , Contracción Muscular/fisiología , Estudios Prospectivos , Insuficiencia Respiratoria/terapia , Insuficiencia Respiratoria/fisiopatología , Insuficiencia Respiratoria/etiología
2.
Intensive Care Med ; 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39287651

RESUMEN

PURPOSE: The aim of this study was to compare the effect of a pressure-controlled strategy allowing non-synchronised unassisted spontaneous ventilation (PC-SV) to a conventional volume assist-control strategy (ACV) on the outcome of patients with acute respiratory distress syndrome (ARDS). METHODS: Open-label randomised clinical trial in 22 intensive care units (ICU) in France. Seven hundred adults with moderate or severe ARDS (PaO2/FiO2 < 200 mmHg) were enrolled from February 2013 to October 2018. Patients were randomly assigned to PC-SV (n = 348) or ACV (n = 352) with similar objectives of tidal volume (6 mL/kg predicted body weight) and positive end-expiratory pressure (PEEP). Paralysis was stopped after 24 h and sedation adapted to favour patients' spontaneous ventilation. The primary endpoint was in-hospital death from any cause at day 60. RESULTS: Hospital mortality [34.6% vs 33.5%, p = 0.77, risk ratio (RR) = 1.03 (95% confidence interval [CI] 0.84-1.27)], 28-day mortality, as well as the number of ventilator-free days and organ failure-free days at day 28 did not differ between PC-SV and ACV groups. Patients in the PC-SV group received significantly less sedation and neuro-muscular blocking agents than in the ACV group. A lower proportion of patients required adjunctive therapy of hypoxemia (including prone positioning) in the PC-SV group than in the ACV group [33.1% vs 41.3%, p = 0.03, RR = 0.80 (95% CI 0.66-0.98)]. The incidences of pneumothorax and refractory hypoxemia did not differ between the groups. CONCLUSIONS: A strategy based on PC-SV mode that favours spontaneous ventilation reduced the need for sedation and adjunctive therapies of hypoxemia but did not significantly reduce mortality compared to ACV with similar tidal volume and PEEP levels.

3.
Ann Intensive Care ; 14(1): 149, 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39312044

RESUMEN

BACKGROUND: Efficacy of inhaled therapy such as Nitric Oxide (iNO) during mechanical ventilation may depend on airway patency. We hypothesized that airway closure and lung collapse, countered by positive end-expiratory pressure (PEEP), influence iNO efficacy. This could support the role of an adequate PEEP titration for inhalation therapy. The main aim of this study was to assess the effect of iNO with PEEP set above or below the airway opening pressure (AOP) generated by airway closure, on hemodynamics and gas exchange in swine models of acute respiratory distress syndrome. Fourteen pigs randomly underwent either bilateral or asymmetrical two-hit model of lung injury. Airway closure and lung collapse were measured with electrical impedance tomography as well as ventilation/perfusion ratio (V/Q). After AOP detection, the effect of iNO (10ppm) was studied with PEEP set randomly above or below regional AOP. Respiratory mechanics, hemodynamics, and gas-exchange were recorded. RESULTS: All pigs presented airway closure (AOP > 0.5cmH2O) after injury. In bilateral injury, iNO was associated with an improved mean pulmonary pressure from 49 ± 8 to 42 ± 7mmHg; (p = 0.003), and ventilation/perfusion matching, caused by a reduction in pixels with low V/Q and shunt from 16%[IQR:13-19] to 9%[IQR:4-12] (p = 0.03) only at PEEP set above AOP. iNO had no effect on hemodynamics or gas exchange for PEEP below AOP (low V/Q 25%[IQR:16-30] to 23%[IQR:14-27]; p = 0.68). In asymmetrical injury, iNO improved pulmonary hemodynamics and ventilation/perfusion matching independently from the PEEP set. iNO was associated with improved oxygenation in all cases. CONCLUSIONS: In an animal model of bilateral lung injury, PEEP level relative to AOP markedly influences iNO efficacy on pulmonary hemodynamics and ventilation/perfusion match, independently of oxygenation.

5.
JAMA Netw Open ; 7(7): e2420458, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38995645

RESUMEN

Importance: The COVID-19 pandemic created unprecedented challenges for clinical trials worldwide, threatening premature closure and trial integrity. Every phase of research operations was affected, often requiring modifications to protocol design and implementation. Objectives: To identify the barriers, solutions, and opportunities associated with continuing critical care trials that were interrupted during the pandemic, and to generate suggestions for future trials. Design, Setting, and Participants: This mixed-methods study performed an explanatory sequential analysis involving a self-administered electronic survey and focus groups of principal investigators (PIs) and project coordinators (PCs) conducting adult and pediatric individual-patient randomized trials of the Canadian Critical Care Trials Group during the COVID-19 pandemic. Eligible trials were actively enrolling patients on March 11, 2020. Data were analyzed between September 2023 and January 2024. Main Outcomes and Measures: Importance ratings of barriers to trial conduct and completion, solutions employed, opportunities arising, and suggested strategies for future trials. Quantitative data examining barriers were analyzed using descriptive statistics. Data addressing solutions, opportunities, and suggestions were analyzed by qualitative content analysis. Integration involved triangulation of data sources and perspectives about 13 trials, synthesized by an interprofessional team incorporating reflexivity and member-checking. Results: A total of 13 trials run by 29 PIs and PCs (100% participation rate) were included. The highest-rated barriers (on a 5-point scale) to ongoing conduct during the pandemic were decisions to pause all clinical research (mean [SD] score, 4.7 [0.8]), focus on COVID-19 studies (mean [SD] score, 4.6 [0.8]), and restricted family presence in hospitals (mean [SD] score, 4.1 [0.8]). Suggestions to enable trial progress and completion included providing scientific leadership, implementing technology for communication and data management, facilitating the informed consent process, adapting the protocol as necessary, fostering site engagement, initiating new sites, streamlining ethics and contract review, and designing nested studies. The pandemic necessitated new funding opportunities to sustain trial enrollment. It increased public awareness of critical illness and the importance of randomized trial evidence. Conclusions and Relevance: While underscoring the vital role of research in society and drawing the scientific community together with a common purpose, the pandemic signaled the need for innovation to ensure the rigor and completion of ongoing trials. Lessons learned to optimize research procedures will help to ensure a vibrant clinical trials enterprise in the future.


Asunto(s)
COVID-19 , Cuidados Críticos , Pandemias , SARS-CoV-2 , Humanos , COVID-19/epidemiología , Canadá , Ensayos Clínicos como Asunto , Proyectos de Investigación , Ensayos Clínicos Controlados Aleatorios como Asunto/métodos , Grupos Focales , Adulto
6.
J Clin Monit Comput ; 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39066871

RESUMEN

PURPOSE: Airway closure is a interruption of communication between larger and smaller airways. The presence of airway closure during mechanical ventilation may lead to the overestimation of driving pressure (DP), introducing errors in the assessment of respiratory mechanics and in positive end-expiratory pressure (PEEP) setting on the ventilator. Patients with severe acute respiratory distress syndrome (ARDS) may exhibit the airway closure phenomenon, which can be easily diagnosed with a low-flow inflation. Prone positioning is a therapeutic manoeuver proven to reduce mortality in ARDS patients, and has been widely implemented also in patients requiring veno-venous extracorporeal membrane oxygenation (V-V ECMO). To date, the impact of prone positioning on changes in airway closure has not been described. METHODS: We present an image analysis of the pressure waveform during volume-controlled ventilation and low-flow inflations before and after prone positioning in an ARDS patient on VV ECMO. RESULTS: A high airway opening pressure level (23 cmH2O) was detected in the supine position during tidal ventilation. Airway closure was confirmed by using a low-flow inflation. Prone positioning significantly attenuated airway closure, with the airway opening pressure decreasing to 13 cmH2O. After re-supination, airway closure was lower as compared with supine position at baseline (17 cmH2O). CONCLUSION: Prone positioning reduced airway closure in an ARDS patient on VV ECMO support.

7.
J Appl Physiol (1985) ; 137(2): 382-393, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38867669

RESUMEN

Prior studies of muscle blood flow and muscle-specific oxygen consumption have required invasive injection of dye and magnetic resonance imaging, respectively. Such measures have limited utility for continuous monitoring of the respiratory muscles. Frequency-domain near-infrared spectroscopy and diffuse correlation spectroscopy (FD-NIRS & DCS) can provide continuous surrogate measures of blood flow index (BFi) and metabolic rate of oxygen consumption (MRO2). This study aimed to validate sternocleidomastoid FD-NIRS & DCS outcomes against electromyography (EMG) and mouth pressure (Pm) during incremental inspiratory threshold loading (ITL). Six female and six male healthy adults (means ± SD; 30 ± 7 yr, maximum inspiratory pressure 118 ± 61 cmH2O) performed incremental ITL starting at low loads (8 ± 2 cmH2O) followed by 50-g increments every 2 min until task failure. FD-NIRS & DCS continuously measured sternocleidomastoid oxygenated and deoxygenated hemoglobin + myoglobin (oxy/deoxy[Hb + Mb]), tissue saturation of oxygen (StO2), BFi, and MRO2. Ventilatory parameters including inspiratory Pm were also evaluated. Pm increased during incremental ITL (P < 0.05), reaching -47[-74 to -34] cmH2O (median [IQR: 25%-75%]) at task failure. Ventilatory parameters were constant throughout ITL (all P > 0.05). Sternocleidomastoid BFi and MRO2 increased from the start of the ITL (both P < 0.05). Deoxy[Hb + Mb] increased close to task failure, concomitantly with a constant increase in MRO2, and decreased StO2. Sternocleidomastoid deoxy[Hb + Mb], BFi, StO2, and MRO2 obtained during ITL via FD-NIRS & DCS correlated with sternocleidomastoid EMG (all P < 0.05). In healthy adults, FD-NIRS & DCS can provide continuous surrogate measures of respiratory BFi and MRO2. Increasing sternocleidomastoid oxygen consumption near task failure was associated with increased oxygen extraction and reduced tissue saturation.NEW & NOTEWORTHY This study introduces a novel approach, frequency-domain near-infrared spectroscopy and diffuse correlation spectroscopy (FD-NIRS & DCS), for noninvasive continuous monitoring of respiratory muscle blood flow and metabolic rate of oxygen consumption. Unlike prior methods involving invasive dye injection and magnetic resonance imaging, FD-NIRS & DCS offers the advantage of continuous measurement without the need for invasive procedures. It holds promise for advancing muscle physiology understanding and opens avenues for real-time monitoring of respiratory muscles.


Asunto(s)
Consumo de Oxígeno , Flujo Sanguíneo Regional , Músculos Respiratorios , Espectroscopía Infrarroja Corta , Humanos , Masculino , Espectroscopía Infrarroja Corta/métodos , Adulto , Consumo de Oxígeno/fisiología , Femenino , Músculos Respiratorios/fisiología , Músculos Respiratorios/metabolismo , Flujo Sanguíneo Regional/fisiología , Electromiografía/métodos , Oxígeno/metabolismo , Adulto Joven , Saturación de Oxígeno/fisiología , Hemoglobinas/metabolismo
8.
Crit Care ; 28(1): 157, 2024 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-38730306

RESUMEN

PURPOSE: Invasive ventilation is a fundamental treatment in intensive care but its precise timing is difficult to determine. This study aims at assessing the effect of initiating invasive ventilation versus waiting, in patients with hypoxemic respiratory failure without immediate reason for intubation on one-year mortality. METHODS: Emulation of a target trial to estimate the benefit of immediately initiating invasive ventilation in hypoxemic respiratory failure, versus waiting, among patients within the first 48-h of hypoxemia. The eligible population included non-intubated patients with SpO2/FiO2 ≤ 200 and SpO2 ≤ 97%. The target trial was emulated using a single-center database (MIMIC-IV) which contains granular information about clinical status. The hourly probability to receive mechanical ventilation was continuously estimated. The hazard ratios for the primary outcome, one-year mortality, and the secondary outcome, 30-day mortality, were estimated using weighted Cox models with stabilized inverse probability weights used to adjust for measured confounding. RESULTS: 2996 Patients fulfilled the inclusion criteria of whom 792 were intubated within 48 h. Among the non-invasive support devices, the use of oxygen through facemask was the most common (75%). Compared to patients with the same probability of intubation but who were not intubated, intubation decreased the hazard of dying for the first year after ICU admission HR 0.81 (95% CI 0.68-0.96, p = 0.018). Intubation was associated with a 30-day mortality HR of 0.80 (95% CI 0.64-0.99, p = 0.046). CONCLUSION: The initiation of mechanical ventilation in patients with acute hypoxemic respiratory failure reduced the hazard of dying in this emulation of a target trial.


Asunto(s)
Respiración Artificial , Insuficiencia Respiratoria , Humanos , Masculino , Femenino , Insuficiencia Respiratoria/terapia , Insuficiencia Respiratoria/mortalidad , Persona de Mediana Edad , Anciano , Respiración Artificial/métodos , Respiración Artificial/estadística & datos numéricos , Hipoxia/terapia , Hipoxia/mortalidad , Modelos de Riesgos Proporcionales , Factores de Tiempo , Unidades de Cuidados Intensivos/organización & administración , Unidades de Cuidados Intensivos/estadística & datos numéricos
9.
Ann Intensive Care ; 14(1): 78, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38776032

RESUMEN

BACKGROUND: Reverse triggering (RT) was described in 2013 as a form of patient-ventilator asynchrony, where patient's respiratory effort follows mechanical insufflation. Diagnosis requires esophageal pressure (Pes) or diaphragmatic electrical activity (EAdi), but RT can also be diagnosed using standard ventilator waveforms. HYPOTHESIS: We wondered (1) how frequently RT would be present but undetected in the figures from literature, especially before 2013; (2) whether it would be more prevalent in the era of small tidal volumes after 2000. METHODS: We searched PubMed, EMBASE, and the Cochrane Central Register of Controlled Trials, from 1950 to 2017, with key words related to asynchrony to identify papers with figures including ventilator waveforms expected to display RT if present. Experts labelled waveforms. 'Definite' RT was identified when Pes or EAdi were in the tracing, and 'possible' RT when only flow and pressure waveforms were present. Expert assessment was compared to the author's descriptions of waveforms. RESULTS: We found 65 appropriate papers published from 1977 to now, containing 181 ventilator waveforms. 21 cases of 'possible' RT and 25 cases of 'definite' RT were identified by the experts. 18.8% of waveforms prior to 2013 had evidence of RT. Most cases were published after 2000 (1 before vs. 45 after, p = 0.03). 54% of RT cases were attributed to different phenomena. A few cases of identified RT were already described prior to 2013 using different terminology (earliest in 1997). While RT cases attributed to different phenomena decreased after 2013, 60% of 'possible' RT remained missed. CONCLUSION: RT has been present in the literature as early as 1997, but most cases were found after the introduction of low tidal volume ventilation in 2000. Following 2013, the number of undetected cases decreased, but RT are still commonly missed. Reverse Triggering, A Missed Phenomenon in the Literature. Critical Care Canada Forum 2019 Abstracts. Can J Anesth/J Can Anesth 67 (Suppl 1), 1-162 (2020). https://doi-org.myaccess.library.utoronto.ca/ https://doi.org/10.1007/s12630-019-01552-z .

10.
Crit Care ; 28(1): 171, 2024 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773629

RESUMEN

BACKGROUND: Tidal expiratory flow limitation (EFLT) complicates the delivery of mechanical ventilation but is only diagnosed by performing specific manoeuvres. Instantaneous analysis of expiratory resistance (Rex) can be an alternative way to detect EFLT without changing ventilatory settings. This study aimed to determine the agreement of EFLT detection by Rex analysis and the PEEP reduction manoeuvre using contingency table and agreement coefficient. The patterns of Rex were explored. METHODS: Medical patients ≥ 15-year-old receiving mechanical ventilation underwent a PEEP reduction manoeuvre from 5 cmH2O to zero for EFLT detection. Waveforms were recorded and analyzed off-line. The instantaneous Rex was calculated and was plotted against the volume axis, overlapped by the flow-volume loop for inspection. Lung mechanics, characteristics of the patients, and clinical outcomes were collected. The result of the Rex method was validated using a separate independent dataset. RESULTS: 339 patients initially enrolled and underwent a PEEP reduction. The prevalence of EFLT was 16.5%. EFLT patients had higher adjusted hospital mortality than non-EFLT cases. The Rex method showed 20% prevalence of EFLT and the result was 90.3% in agreement with PEEP reduction manoeuvre. In the validation dataset, the Rex method had resulted in 91.4% agreement. Three patterns of Rex were identified: no EFLT, early EFLT, associated with airway disease, and late EFLT, associated with non-airway diseases, including obesity. In early EFLT, external PEEP was less likely to eliminate EFLT. CONCLUSIONS: The Rex method shows an excellent agreement with the PEEP reduction manoeuvre and allows real-time detection of EFLT. Two subtypes of EFLT are identified by Rex analysis. TRIAL REGISTRATION: Clinical trial registered with www.thaiclinicaltrials.org (TCTR20190318003). The registration date was on 18 March 2019, and the first subject enrollment was performed on 26 March 2019.


Asunto(s)
Respiración Artificial , Humanos , Masculino , Femenino , Respiración Artificial/métodos , Respiración Artificial/estadística & datos numéricos , Persona de Mediana Edad , Anciano , Volumen de Ventilación Pulmonar/fisiología , Respiración con Presión Positiva/métodos , Respiración con Presión Positiva/estadística & datos numéricos , Respiración con Presión Positiva/normas , Espiración/fisiología , Adulto
11.
Crit Care ; 28(1): 107, 2024 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-38566126

RESUMEN

BACKGROUND: Pre-clinical studies suggest that dyssynchronous diaphragm contractions during mechanical ventilation may cause acute diaphragm dysfunction. We aimed to describe the variability in diaphragm contractile loading conditions during mechanical ventilation and to establish whether dyssynchronous diaphragm contractions are associated with the development of impaired diaphragm dysfunction. METHODS: In patients receiving invasive mechanical ventilation for pneumonia, septic shock, acute respiratory distress syndrome, or acute brain injury, airway flow and pressure and diaphragm electrical activity (Edi) were recorded hourly around the clock for up to 7 days. Dyssynchronous post-inspiratory diaphragm loading was defined based on the duration of neural inspiration after expiratory cycling of the ventilator. Diaphragm function was assessed on a daily basis by neuromuscular coupling (NMC, the ratio of transdiaphragmatic pressure to diaphragm electrical activity). RESULTS: A total of 4508 hourly recordings were collected in 45 patients. Edi was low or absent (≤ 5 µV) in 51% of study hours (median 71 h per patient, interquartile range 39-101 h). Dyssynchronous post-inspiratory loading was present in 13% of study hours (median 7 h per patient, interquartile range 2-22 h). The probability of dyssynchronous post-inspiratory loading was increased with reverse triggering (odds ratio 15, 95% CI 8-35) and premature cycling (odds ratio 8, 95% CI 6-10). The duration and magnitude of dyssynchronous post-inspiratory loading were associated with a progressive decline in diaphragm NMC (p < 0.01 for interaction with time). CONCLUSIONS: Dyssynchronous diaphragm contractions may impair diaphragm function during mechanical ventilation. TRIAL REGISTRATION: MYOTRAUMA, ClinicalTrials.gov NCT03108118. Registered 04 April 2017 (retrospectively registered).


Asunto(s)
Respiración Artificial , Síndrome de Dificultad Respiratoria , Humanos , Diafragma , Respiración Artificial/efectos adversos , Tórax , Ventiladores Mecánicos
14.
J Biomed Opt ; 29(3): 035002, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38532926

RESUMEN

Significance: Mechanical ventilation (MV) is a cornerstone technology in the intensive care unit as it assists with the delivery of oxygen in critically ill patients. The process of weaning patients from MV can be long and arduous and can lead to serious complications for many patients. Despite the known importance of inspiratory muscle function in the success of weaning, current clinical standards do not include direct monitoring of these muscles. Aim: The goal of this project was to develop and validate a combined frequency domain near-infrared spectroscopy (FD-NIRS) and diffuse correlation spectroscopy (DCS) system for the noninvasive characterization of inspiratory muscle response to a load. Approach: The system was fabricated by combining a custom digital FD-NIRS and DCS system. It was validated via liquid phantom titrations and a healthy volunteer study. The sternocleidomastoid (SCM), an accessory muscle of inspiration, was monitored during a short loading period in fourteen young, healthy volunteers. Volunteers performed two different respiratory exercises, a moderate load and a high load, which consisted of a one-minute baseline, a one-minute load, and a six-minute recovery period. Results: The system has low crosstalk between absorption, reduced scattering, and flow when tested in a set of liquid titrations. Faster dynamics were observed for changes in blood flow index (BFi), and metabolic rate of oxygen (MRO2) compared with hemoglobin + myoglobin (Hb+Mb) based parameters after the onset of loads in males. Additionally, larger percent changes in BFi, and MRO2 were observed compared with Hb+Mb parameters in both males and females. There were also sex differences in baseline values of oxygenated Hb+Mb, total Hb+Mb, and tissue saturation. Conclusions: The dynamic characteristics of Hb+Mb concentration and blood flow were distinct during loading of the SCM, suggesting that the combination of FD-NIRS and DCS may provide a more complete picture of inspiratory muscle dynamics.


Asunto(s)
Oxígeno , Espectroscopía Infrarroja Corta , Humanos , Masculino , Femenino , Espectroscopía Infrarroja Corta/métodos , Hemoglobinas/análisis , Oxihemoglobinas/metabolismo , Consumo de Oxígeno/fisiología , Músculos/química , Músculo Esquelético/fisiología
15.
Crit Care ; 28(1): 75, 2024 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-38486268

RESUMEN

BACKGROUND: Flow starvation is a type of patient-ventilator asynchrony that occurs when gas delivery does not fully meet the patients' ventilatory demand due to an insufficient airflow and/or a high inspiratory effort, and it is usually identified by visual inspection of airway pressure waveform. Clinical diagnosis is cumbersome and prone to underdiagnosis, being an opportunity for artificial intelligence. Our objective is to develop a supervised artificial intelligence algorithm for identifying airway pressure deformation during square-flow assisted ventilation and patient-triggered breaths. METHODS: Multicenter, observational study. Adult critically ill patients under mechanical ventilation > 24 h on square-flow assisted ventilation were included. As the reference, 5 intensive care experts classified airway pressure deformation severity. Convolutional neural network and recurrent neural network models were trained and evaluated using accuracy, precision, recall and F1 score. In a subgroup of patients with esophageal pressure measurement (ΔPes), we analyzed the association between the intensity of the inspiratory effort and the airway pressure deformation. RESULTS: 6428 breaths from 28 patients were analyzed, 42% were classified as having normal-mild, 23% moderate, and 34% severe airway pressure deformation. The accuracy of recurrent neural network algorithm and convolutional neural network were 87.9% [87.6-88.3], and 86.8% [86.6-87.4], respectively. Double triggering appeared in 8.8% of breaths, always in the presence of severe airway pressure deformation. The subgroup analysis demonstrated that 74.4% of breaths classified as severe airway pressure deformation had a ΔPes > 10 cmH2O and 37.2% a ΔPes > 15 cmH2O. CONCLUSIONS: Recurrent neural network model appears excellent to identify airway pressure deformation due to flow starvation. It could be used as a real-time, 24-h bedside monitoring tool to minimize unrecognized periods of inappropriate patient-ventilator interaction.


Asunto(s)
Aprendizaje Profundo , Respiración Artificial , Adulto , Humanos , Inteligencia Artificial , Pulmón , Respiración Artificial/métodos , Ventiladores Mecánicos
16.
Respir Care ; 69(4): 395-406, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38538026

RESUMEN

BACKGROUND: Aerosol barrier enclosure systems have been designed to prevent airborne contamination, but their safety has been questioned. A vacuum tent was designed with active continuous suctioning to minimize risks of aerosol dispersion. We tested its efficacy, risk of rebreathing, and usability on a bench, in healthy volunteers, and in an ergonomic clinical assessment study. METHODS: First, a manikin with airway connected to a breathing simulator was placed inside the vacuum tent to generate active breathing, cough, and CO2 production; high-flow nasal cannula (HFNC) was applied in the manikin's nares. Negative pressure was applied in the vacuum tent's apex port using wall suction. Fluorescent microparticles were aerosolized in the vacuum tent for qualitative assessment. To quantify particles inside and around vacuum tent (aerosol retention), an airtight aerosol chamber with aerosolized latex microparticles was used. The vacuum tent was tested on healthy volunteers breathing with and without HFNC. Last, its usability was assessed in 5 subjects by 5 different anesthesiologists for delivery of full anesthesia, including intubation and extubation. RESULTS: The vacuum tent was adjusted until no leak was visualized using fluorescent particles. The efficacy in retaining microparticles was confirmed quantitatively. CO2 accumulation inside the vacuum tent showed an inverse correlation with the suction flow in all conditions (normal breathing and HFNC 30 or 60 L/min) in bench and healthy volunteers. Particle removal efficacy and safe breathing conditions (CO2, temperature) were reached when suctioning was at least 60 L/min or 20 L/min > HFNC flow. Five subjects were successfully intubated and anesthetized without ergonomic difficulties and with minimal interference with workflow and an excellent overall assessment by the anesthesiologists. CONCLUSIONS: The vacuum tent effectively minimized aerosol dispersion. Its continuous suction system set at a high suction flow was crucial to avoid the spread of aerosol particles and CO2 rebreathing.


Asunto(s)
Dióxido de Carbono , Aerosoles y Gotitas Respiratorias , Humanos , Vacio , Respiración , Nebulizadores y Vaporizadores , Aerosoles
17.
Intensive Care Med ; 50(5): 617-631, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38512400

RESUMEN

PURPOSE: Assessing efficacy of electrical impedance tomography (EIT) in optimizing positive end-expiratory pressure (PEEP) for acute respiratory distress syndrome (ARDS) patients to enhance respiratory system mechanics and prevent ventilator-induced lung injury (VILI), compared to traditional methods. METHODS: We carried out a systematic review and meta-analysis, spanning literature from January 2012 to May 2023, sourced from Scopus, PubMed, MEDLINE (Ovid), Cochrane, and LILACS, evaluated EIT-guided PEEP strategies in ARDS versus conventional methods. Thirteen studies (3 randomized, 10 non-randomized) involving 623 ARDS patients were analyzed using random-effects models for primary outcomes (respiratory mechanics and mechanical power) and secondary outcomes (PaO2/FiO2 ratio, mortality, stays in intensive care unit (ICU), ventilator-free days). RESULTS: EIT-guided PEEP significantly improved lung compliance (n = 941 cases, mean difference (MD) = 4.33, 95% confidence interval (CI) [2.94, 5.71]), reduced mechanical power (n = 148, MD = - 1.99, 95% CI [- 3.51, - 0.47]), and lowered driving pressure (n = 903, MD = - 1.20, 95% CI [- 2.33, - 0.07]) compared to traditional methods. Sensitivity analysis showed consistent positive effect of EIT-guided PEEP on lung compliance in randomized clinical trials vs. non-randomized studies pooled (MD) = 2.43 (95% CI - 0.39 to 5.26), indicating a trend towards improvement. A reduction in mortality rate (259 patients, relative risk (RR) = 0.64, 95% CI [0.45, 0.91]) was associated with modest improvements in compliance and driving pressure in three studies. CONCLUSIONS: EIT facilitates real-time, individualized PEEP adjustments, improving respiratory system mechanics. Integration of EIT as a guiding tool in mechanical ventilation holds potential benefits in preventing ventilator-induced lung injury. Larger-scale studies are essential to validate and optimize EIT's clinical utility in ARDS management.


Asunto(s)
Impedancia Eléctrica , Respiración con Presión Positiva , Síndrome de Dificultad Respiratoria , Tomografía , Lesión Pulmonar Inducida por Ventilación Mecánica , Humanos , Respiración con Presión Positiva/métodos , Síndrome de Dificultad Respiratoria/terapia , Síndrome de Dificultad Respiratoria/fisiopatología , Tomografía/métodos , Lesión Pulmonar Inducida por Ventilación Mecánica/prevención & control , Mecánica Respiratoria/fisiología
19.
Front Pediatr ; 12: 1310494, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38379913

RESUMEN

Background: Airway closure, which refers to the complete collapse of the airway, has been described under mechanical ventilation during anesthesia and more recently in adult patients with acute respiratory distress syndrome (ARDS). A ventilator maneuver can be used to identify airway closure and measure the pressure required for the airway to reopen, known as the airway opening pressure (AOP). Without that maneuver, AOP is unknown to clinicians. Objective: This study aims to demonstrate the technical adaptation of the adult maneuver for children and illustrate its application in two cases of pediatric ARDS (p-ARDS). Methods: A bench study was performed to adapt the maneuver for 3-50 kg patients. Four maneuvers were performed for each simulated patient, with 1, 2, 3, and 4 s of insufflation time to deliver a tidal volume (Vt) of 6 ml/kg by a continuous flow. Results: Airway closure was simulated, and AOP was visible at 15 cmH2O with a clear inflection point, except for the 3 kg simulated patient. Regarding insufflation time, a 4 s maneuver exhibited a better performance in 30 and 50 kg simulated patients since shorter insufflation times had excessive flowrates (>10 L/min). Below 20 kg, the difference in resistive pressure between a 3 s and a 4 sec maneuver was negligible; therefore, prolonging the maneuver beyond 3 s was not useful. Airway closure was identified in two p-ARDS patients, with the pediatric maneuver being employed in the 28 kg patient. Conclusions: We propose a pediatric AOP maneuver delivering 6 ml/kg of Vt at a continuous low-flow inflation for 3 s for patients weighing up to 20 kg and for 4 s for patients weighing beyond 20 kg.

20.
Intensive Care Med Exp ; 12(1): 20, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38416269

RESUMEN

BACKGROUND: Lung- and diaphragm-protective (LDP) ventilation may prevent diaphragm atrophy and patient self-inflicted lung injury in acute respiratory failure, but feasibility is uncertain. The objectives of this study were to estimate the proportion of patients achieving LDP targets in different modes of ventilation, and to identify predictors of need for extracorporeal carbon dioxide removal (ECCO2R) to achieve LDP targets. METHODS: An in silico clinical trial was conducted using a previously published mathematical model of patient-ventilator interaction in a simulated patient population (n = 5000) with clinically relevant physiological characteristics. Ventilation and sedation were titrated according to a pre-defined algorithm in pressure support ventilation (PSV) and proportional assist ventilation (PAV+) modes, with or without adjunctive ECCO2R, and using ECCO2R alone (without ventilation or sedation). Random forest modelling was employed to identify patient-level factors associated with achieving targets. RESULTS: After titration, the proportion of patients achieving targets was lower in PAV+ vs. PSV (37% vs. 43%, odds ratio 0.78, 95% CI 0.73-0.85). Adjunctive ECCO2R substantially increased the probability of achieving targets in both PSV and PAV+ (85% vs. 84%). ECCO2R alone without ventilation or sedation achieved LDP targets in 9%. The main determinants of success without ECCO2R were lung compliance, ventilatory ratio, and strong ion difference. In silico trial results corresponded closely with the results obtained in a clinical trial of the LDP titration algorithm (n = 30). CONCLUSIONS: In this in silico trial, many patients required ECCO2R in combination with mechanical ventilation and sedation to achieve LDP targets. ECCO2R increased the probability of achieving LDP targets in patients with intermediate degrees of derangement in elastance and ventilatory ratio.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA