Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Appl Crystallogr ; 56(Pt 3): 581-588, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37284256

RESUMEN

Understanding the nucleation and growth mechanisms of nanocrystals under hydro- and solvothermal conditions is key to tailoring functional nanomaterials. High-energy and high-flux synchrotron radiation is ideal for characterization by powder X-ray diffraction and X-ray total scattering in real time. Different versions of batch-type cell reactors have been employed in this work, exploiting the robustness of polyimide-coated fused quartz tubes with an inner diameter of 0.7 mm, as they can withstand pressures up to 250 bar and temperatures up to 723 K for several hours. Reported here are recent developments of the in situ setups available for general users on the P21.1 beamline at PETRA III and the DanMAX beamline at MAX IV to study nucleation and growth phenomena in solvothermal synthesis. It is shown that data suitable for both reciprocal-space Rietveld refinement and direct-space pair distribution function refinement can be obtained on a timescale of 4 ms.

2.
Angew Chem Int Ed Engl ; 59(49): 21920-21924, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-32820603

RESUMEN

High-entropy alloy (HEA) nanoparticles hold great promise as tunable catalysts. Despite the fact that alloy formation is typically difficult in oxygen-rich environments, we found that Pt-Ir-Pd-Rh-Ru nanoparticles can be synthesized under benign low-temperature solvothermal conditions. In situ X-ray scattering and transmission electron microscopy reveal the solvothermal formation mechanism of Pt-Ir-Pd-Rh-Ru nanoparticles. For the individual metal acetylacetonate precursors, formation of single metal nanoparticles takes place at temperatures spanning from ca. 150 °C for Pd to ca. 350 °C for Ir. However, for the mixture, homogenous Pt-Ir-Pd-Rh-Ru HEA nanoparticles can be obtained around 200 °C due to autocatalyzed metal reduction at the (111) facets of the forming crystallites. The autocatalytic formation mechanism suggests that many types of HEA nanocatalysts should accessible with scalable solvothermal reactions, thereby providing broad availability and tunability.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA