Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Control Release ; 328: 834-845, 2020 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-33157191

RESUMEN

Adeno-associated virus (AAV) is a promising vector for gene therapy, but its broad tropism can be detrimental if the transgene being delivered is harmful when expressed ubiquitously in the body, i.e. in non-target tissues. Delivering the transgene of interest to target cells at levels high enough to be therapeutically effective while maintaining safety by minimizing delivery to off-target cells is a prevalent challenge in the field of gene therapy. We have developed a protease activatable vector (provector) platform based on AAV9 that can be injected systemically to deliver therapeutic transgenes site-specifically to diseased cells by responding to extracellular proteases present at the disease site. The provector platform consists of a peptide insertion into the virus capsid which disrupts the virus' ability to bind to cell surface receptors. This peptide contains a blocking motif (aspartic acid residues) flanked on either side by cleavage sequences that are recognized by certain proteases. Exposure to proteases cleaves the peptides off the capsid, activating or "switching ON" the provector. In response to the activation, the provectors regain their ability to bind and transduce cells. Here, we have designed a provector that is activated by cysteine aspartic proteases (caspases), which have roles in inflammation and apoptosis and thus are elevated at sites of diseases such as heart failure, neurodegenerative diseases, and ischemic stroke. This provector demonstrates a 200-fold reduction in transduction ability in the OFF state compared to AAV9, reducing the virus' ability to transduce off-target healthy tissue. Following exposure to and proteolysis by caspase-3, the provector shows a 95-fold increase in transduction compared to the OFF state. The switchable transduction behavior was found to be a direct result of the peptide insertion ablating the ability of the virus to bind to cells. In vivo studies were conducted to characterize the biodistribution, blood circulation time, neutralizing antibody formation, and targeted delivery ability of the caspase-activatable provector in a model of heart failure.


Asunto(s)
Dependovirus , Vectores Genéticos , Caspasas , Dependovirus/genética , Técnicas de Transferencia de Gen , Terapia Genética , Distribución Tisular , Transducción Genética , Transgenes
2.
Lab Invest ; 99(8): 1233-1244, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30728464

RESUMEN

Genetically engineered mouse models (GEMMs) that recapitulate the major genetic drivers in pancreatic ductal adenocarcinoma (PDAC) have provided unprecedented insights into the pathogenesis of this lethal neoplasm. Nonetheless, generating an autochthonous model is an expensive, time consuming and labor intensive process, particularly when tissue specific expression or deletion of compound alleles are involved. In addition, many of the current PDAC GEMMs cause embryonic, pancreas-wide activation or loss of driver alleles, neither of which reflects the cognate human disease scenario. The advent of CRISPR/Cas9 based gene editing can potentially circumvent many of the aforementioned shortcomings of conventional breeding schema, but ensuring the efficiency of gene editing in vivo remains a challenge. Here we have developed a pipeline for generating PDAC GEMMs of complex genotypes with high efficiency using a single "workhorse" mouse strain expressing Cas9 in the adult pancreas under a p48 promoter. Using adeno-associated virus (AAV) mediated delivery of multiplexed guide RNAs (sgRNAs) to the adult murine pancreas of p48-Cre; LSL-Cas9 mice, we confirm our ability to express an oncogenic Kras G12D allele through homology-directed repair (HDR), in conjunction with CRISPR-induced disruption of cooperating alleles (Trp53, Lkb1 and Arid1A). The resulting GEMMs demonstrate a spectrum of precursor lesions (pancreatic intraepithelial neoplasia [PanIN] or Intraductal papillary mucinous neoplasm [IPMN] with eventual progression to PDAC. Next generation sequencing of the resulting murine PDAC confirms HDR of oncogenic KrasG12D allele at the endogenous locus, and insertion deletion ("indel") and frameshift mutations of targeted tumor suppressor alleles. By using a single "workhorse" mouse strain and optimal AAV serotype for in vivo gene editing with combination of driver alleles, we present a facile autochthonous platform for interrogation of the PDAC genome.


Asunto(s)
Sistemas CRISPR-Cas/genética , Edición Génica/métodos , Neoplasias Experimentales , Neoplasias Pancreáticas , Recombinación Genética/genética , Animales , Dependovirus/genética , Técnicas de Transferencia de Gen , Vectores Genéticos/genética , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , ARN Guía de Kinetoplastida/genética
3.
Mol Ther ; 27(3): 611-622, 2019 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-30772143

RESUMEN

Adeno-associated virus (AAV) has emerged as a promising gene delivery vector because of its non-pathogenicity, simple structure and genome, and low immunogenicity compared to other viruses. However, its adoption as a safe and effective delivery vector for certain diseases relies on altering its tropism to deliver transgenes to desired cell populations. To this end, we have developed a protease-activatable AAV vector, named provector, that responds to elevated extracellular protease activity commonly found in diseased tissue microenvironments. The AAV9-based provector is initially inactive, but then it can be switched on by matrix metalloproteinases (MMP)-2 and -9. Cryo-electron microscopy and image reconstruction reveal that the provector capsid is structurally similar to that of AAV9, with a flexible peptide insertion at the top of the 3-fold protrusions. In an in vivo model of myocardial infarction (MI), the provector is able to deliver transgenes site specifically to high-MMP-activity regions of the damaged heart, with concomitant decreased delivery to many off-target organs, including the liver. The AAV provector may be useful in the future for enhanced delivery of transgenes to sites of cardiac damage.


Asunto(s)
Dependovirus/genética , Terapia Genética/métodos , Animales , Anticuerpos Neutralizantes/metabolismo , Circulación Sanguínea/fisiología , Microscopía por Crioelectrón , Femenino , Técnicas de Transferencia de Gen , Vectores Genéticos/genética , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 7 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones Endogámicos BALB C , Miocardio/metabolismo , Miocardio/patología
4.
J Control Release ; 267: 80-89, 2017 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-28842318

RESUMEN

Virus-based therapies have gained momentum as the next generation of treatments for a variety of serious diseases. In order to make these therapies more controllable, stimulus-responsive viral vectors capable of sensing and responding to specific environmental inputs are currently being developed. A number of viruses naturally respond to endogenous stimuli, such as pH, redox, and proteases, which are present at different concentrations in diseases and at different organ and organelle sites. Additionally, rather than relying on natural viral properties, efforts are underway to engineer viruses to respond to endogenous stimuli in new ways as well as to exogenous stimuli, such as temperature, magnetic field, and optical light. Viruses with stimulus-responsive capabilities, either nature-evolved or human-engineered, will be reviewed to capture the current state of the field. Stimulus-responsive viral vector design considerations as well as gaps in current research efforts will be identified.


Asunto(s)
Sistemas de Liberación de Medicamentos , Virus , Animales , Humanos , Concentración de Iones de Hidrógeno , Oxidación-Reducción , Péptido Hidrolasas , Estimulación Física
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA