Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Metab ; 78: 101835, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37931788

RESUMEN

OBJECTIVE: Preserving core body temperature across a wide range of ambient temperatures requires adaptive changes of thermogenesis that must be offset by corresponding changes of energy intake if body fat stores are also to be preserved. Among neurons implicated in the integration of thermoregulation with energy homeostasis are those that express both neuropeptide Y (NPY) and agouti-related protein (AgRP) (referred to herein as AgRP neurons). Specifically, cold-induced activation of AgRP neurons was recently shown to be required for cold exposure to increase food intake in mice. Here, we investigated how consuming a high-fat diet (HFD) impacts various adaptive responses to cold exposure as well as the responsiveness of AgRP neurons to cold. METHODS: To test this, we used immunohistochemistry, in vivo fiber photometry and indirect calorimetry for continuous measures of core temperature, energy expenditure, and energy intake in both chow- and HFD-fed mice housed at different ambient temperatures. RESULTS: We show that while both core temperature and the thermogenic response to cold are maintained normally in HFD-fed mice, the increase of energy intake needed to preserve body fat stores is blunted, resulting in weight loss. Using both immunohistochemistry and in vivo fiber photometry, we show that although cold-induced AgRP neuron activation is detected regardless of diet, the number of cold-responsive neurons appears to be blunted in HFD-fed mice. CONCLUSIONS: We conclude that HFD-feeding disrupts the integration of systems governing thermoregulation and energy homeostasis that protect body fat mass during cold exposure.


Asunto(s)
Dieta Alta en Grasa , Obesidad , Ratones , Animales , Dieta Alta en Grasa/efectos adversos , Obesidad/metabolismo , Proteína Relacionada con Agouti/metabolismo , Regulación de la Temperatura Corporal , Homeostasis
2.
Endocrinology ; 164(7)2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37279930

RESUMEN

When mammals are exposed to a warm environment, overheating is prevented by activation of "warm-responsive" neurons (WRNs) in the hypothalamic preoptic area (POA) that reduce thermogenesis while promoting heat dissipation. Heat exposure also impairs glucose tolerance, but whether this also results from activation of POA WRNs is unknown. To address this question, we sought in the current work to determine if glucose intolerance induced by heat exposure can be attributed to activation of a specific subset of WRNs that express pituitary adenylate cyclase-activating peptide (ie, POAPacap neurons). We report that when mice are exposed to an ambient temperature sufficiently warm to activate POAPacap neurons, the expected reduction of energy expenditure is associated with glucose intolerance, and that these responses are recapitulated by chemogenetic POAPacap neuron activation. Because heat-induced glucose intolerance was not blocked by chemogenetic inhibition of POAPacap neurons, we conclude that POAPacap neuron activation is sufficient, but not required, to explain the impairment of glucose tolerance elicited by heat exposure.


Asunto(s)
Hipotálamo , Área Preóptica , Ratones , Masculino , Animales , Área Preóptica/fisiología , Homeostasis , Hipotálamo/fisiología , Regulación de la Temperatura Corporal/fisiología , Neuronas/fisiología , Glucosa , Mamíferos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA