Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Base de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Phytopathology ; 97(12): 1608-24, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18943722

RESUMEN

ABSTRACT In an effort to characterize the association between weather variables and inoculum of Gibberella zeae in wheat canopies, spikes were sampled and assayed for pathogen propagules from plots established in Indiana, North Dakota, Ohio, Pennsylvania, South Dakota, and Manitoba between 1999 and 2005. Inoculum abundance was quantified as the daily number of colony forming units per spike (CFU/spike). A total of 49 individual weather variables for 24-h periods were generated from measurements of ambient weather data. Polynomial distributed lag regression analysis, followed by linear mixed model analysis, was used to (i) identify weather variables significantly related to log-transformed CFU/spike (the response variable; Y), (ii) determine the time window (i.e., lag length) over which each weather variable affected Y, (iii) determine the form of the relationship between each weather variable and Y (defined in terms of the polynomial degree for the relationship between the parameter weights for the weather variables and the time lag involved), and (iv) account for location-specific effects and random effects of years within locations on the response variable. Both location and year within location affected the magnitude of Y, but there was no consistent trend in Y over time. Y on each day was significantly and simultaneously related to weather variables on the day of sampling and on the 8 days prior to sampling (giving a 9-day time window). The structural relationship corresponded to polynomial degrees of 0, 1, or 2, generally showing a smooth change in the parameter weights and time lag. Moisture- (e.g., relative humidity-) related variables had the strongest relationship with Y, but air temperature- and rainfall-related variables also significantly affected Y. The overall marginal effect of each weather variable on Y was positive. Thus, local weather conditions can be utilized to improve estimates of spore density on wheat spikes around the time of flowering.

2.
Theor Appl Genet ; 109(5): 944-53, 2004 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15490099

RESUMEN

Septoria tritici blotch (STB), caused by the ascomycete Mycosphaerella graminicola (anamorph Septoria tritici), was the most destructive disease of wheat in Indiana and adjacent states before deployment of the resistance gene Stb1 during the early 1970s. Since then, Stb1 has provided durable protection against STB in widely grown wheat cultivars. However, its chromosomal location and allelic relationships to most other STB genes are not known, so the molecular mapping of Stb1 is of great interest. Genetic analyses and molecular mapping were performed for two mapping populations. A total of 148 F1 plants (mapping population I) were derived from a three-way cross between the resistant line P881072-75-1 and the susceptible lines P881072-75-2 and Monon, and 106 F6 recombinant-inbred lines (mapping population II) were developed from a cross between the resistant line 72626E2-12-9-1 and the susceptible cultivar Arthur. Bulked-segregant analysis with random amplified polymorphic DNA (RAPD), amplified fragment length polymorphism (AFLP), and microsatellite or simple-sequence repeat (SSR) markers was conducted to identify those that were putatively linked to the Stb1 gene. Segregation analyses confirmed that a single dominant gene controls the resistance to M. graminicola in each mapping population. Two RAPD markers, G7(1200) and H19(520), were tightly linked to Stb1 in wheat line P881072-75-1 at distances of less than 0.68 cM and 1.4 cM, respectively. In mapping population II, the most closely linked marker was SSR Xbarc74, which was 2.8 cM proximal to Stb1 on chromosome 5BL. Microsatellite loci Xgwm335 and Xgwm213 also were proximal to Stb1 at distances of 7.4 cM and 8.3 cM, respectively. The flanking AFLP marker, EcoRI-AGC/ MseI-CTA-1, was 8.4 cM distal to Stb1. The two RAPD markers, G7(1200) and H19(520), and AFLP EcoRI-AGC/ MseI-CTA-1, were cloned and sequenced for conversion into sequence-characterized amplified region (SCAR) markers. Only RAPD allele H19(520) could be converted successfully, and none of the SCAR markers was diagnostic for the Stb1 locus. Analysis of SSR and the original RAPD primers on several 5BL deletion stocks positioned the Stb1 locus in the region delineated by chromosome breakpoints at fraction lengths 0.59 and 0.75. The molecular markers tightly linked to Stb1 could be useful for marker-assisted selection and for pyramiding of Stb1 with other genes for resistance to M. graminicola in wheat.


Asunto(s)
Ascomicetos , Inmunidad Innata/genética , Enfermedades de las Plantas/microbiología , Triticum/genética , Cruzamientos Genéticos , Cartilla de ADN , Genes de Plantas/genética , Ligamiento Genético , Indiana , Repeticiones de Minisatélite/genética , Técnicas de Amplificación de Ácido Nucleico , Mapeo Físico de Cromosoma , Enfermedades de las Plantas/genética , Polimorfismo de Longitud del Fragmento de Restricción , Técnica del ADN Polimorfo Amplificado Aleatorio
3.
Biochim Biophys Acta ; 1447(2-3): 348-56, 1999 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-10542338

RESUMEN

A new Zeta class glutathione S-transferases (GST) gene, pGST, has been cloned from wheat for the first time by the differential display PCR (DD-PCR) method. The genomic sequence of pGST, TA-GSTZ1, contains nine exons that encode a polypeptide of 213 amino acids and eight introns. The deduced amino acid sequence of TA-GSTZ1 as well as the exon:intron placement are more similar to the GSTs of the Zeta class than to the two wheat GSTs reported earlier. The pGST cDNA gene product expressed in Escherichia coli and purified by affinity chromatography showed typical Zeta class GST and glutathione peroxidase activities. Sequence polymorphism in the 3' untranslated region (UTR) of TA-GSTZ1 gene in wheat has been discovered. In this study, an 89 bp sequence is present in the 3' UTR of TA-GSTZ1gene in 16 wheat cultivars but absent in the other five. Although the biological importance of this polymorphism is unknown, it can be useful as a genetic marker in wheat breeding.


Asunto(s)
Genes de Plantas , Glutatión Transferasa/genética , Triticum/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Clonación Molecular , Evolución Molecular , Humanos , Datos de Secuencia Molecular , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA