Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Med Chem ; 66(15): 10715-10733, 2023 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-37486969

RESUMEN

While STING agonists have proven to be effective preclinically as anti-tumor agents, these promising results have yet to be translated in the clinic. A STING agonist antibody-drug conjugate (ADC) could overcome current limitations by improving tumor accessibility, allowing for systemic administration as well as tumor-localized activation of STING for greater anti-tumor activity and better tolerability. In line with this effort, a STING agonist ADC platform was identified through systematic optimization of the payload, linker, and scaffold based on multiple factors including potency and specificity in both in vitro and in vivo evaluations. The platform employs a potent non-cyclic dinucleotide STING agonist, a cleavable ester-based linker, and a hydrophilic PEG8-bisglucamine scaffold. A tumor-targeted ADC built with the resulting STING agonist platform induced robust and durable anti-tumor activity and demonstrated high stability and favorable pharmacokinetics in nonclinical species.


Asunto(s)
Antineoplásicos , Inmunoconjugados , Neoplasias , Humanos , Inmunoconjugados/farmacocinética , Anticuerpos Monoclonales , Antineoplásicos/farmacocinética , Neoplasias/tratamiento farmacológico
2.
Mol Cancer Ther ; 14(7): 1625-36, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25911688

RESUMEN

Although EGFR is a validated therapeutic target across multiple cancer indications, the often modest clinical responses to current anti-EGFR agents suggest the need for improved therapeutics. Here, we demonstrate that signal amplification driven by high-affinity EGFR ligands limits the capacity of monoclonal anti-EGFR antibodies to block pathway signaling and cell proliferation and that these ligands are commonly coexpressed with low-affinity EGFR ligands in epithelial tumors. To develop an improved antibody therapeutic capable of overcoming high-affinity ligand-mediated signal amplification, we used a network biology approach comprised of signaling studies and computational modeling of receptor-antagonist interactions. Model simulations suggested that an oligoclonal antibody combination may overcome signal amplification within the EGFR:ERK pathway driven by all EGFR ligands. Based on this, we designed MM-151, a combination of three fully human IgG1 monoclonal antibodies that can simultaneously engage distinct, nonoverlapping epitopes on EGFR with subnanomolar affinities. In signaling studies, MM-151 antagonized high-affinity EGFR ligands more effectively than cetuximab, leading to an approximately 65-fold greater decrease in signal amplification to ERK. In cell viability studies, MM-151 demonstrated antiproliferative activity against high-affinity EGFR ligands, either singly or in combination, while cetuximab activity was largely abrogated under these conditions. We confirmed this finding both in vitro and in vivo in a cell line model of autocrine high-affinity ligand expression. Together, these preclinical studies provide rationale for the clinical study of MM-151 and suggest that high-affinity EGFR ligand expression may be a predictive response marker that distinguishes MM-151 from other anti-EGFR therapeutics.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Receptores ErbB/antagonistas & inhibidores , Neoplasias/tratamiento farmacológico , Ensayos Antitumor por Modelo de Xenoinjerto , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales Humanizados , Apoptosis/efectos de los fármacos , Western Blotting , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Epítopos/inmunología , Epítopos/metabolismo , Receptores ErbB/inmunología , Receptores ErbB/metabolismo , Femenino , Humanos , Ligandos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones SCID , Microscopía Confocal , Terapia Molecular Dirigida , Neoplasias/inmunología , Neoplasias/metabolismo
3.
Growth Factors ; 30(5): 320-32, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22946653

RESUMEN

The colonic epithelium is composed of a polarized monolayer sheathed by a layer of pericryptal myofibroblasts (PCMFs). We mimicked these cellular compartments in vitro to assess the effects of paracrine-acting PCMF-derived factors on tight junction (TJ) integrity, as measured by transepithelial electrical resistance (TER). Coculture with 18Co PCMFs, or basolateral administration of 18Co conditioned medium, significantly reduced TER of polarized Caco-2 cells. Among candidate paracrine factors, only keratinocyte growth factor (KGF) reduced Caco-2 TER; basolateral KGF treatment led to time- and concentration-dependent increases in claudin-2 levels. We also demonstrate that amphiregulin (AREG), produced largely by Caco-2 cells, increased claudin-2 levels, leading to epidermal growth factor receptor-mediated TER reduction. We propose that colonic epithelial TJ integrity can be modulated by paracrine KGF and autocrine AREG through increased claudin-2 levels. KGF-regulated claudin-2 induction may have implications for inflammatory bowel disease, where both KGF and claudin-2 are upregulated.


Asunto(s)
Claudina-2/metabolismo , Factor 7 de Crecimiento de Fibroblastos/metabolismo , Glicoproteínas/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Mucosa Intestinal/fisiología , Miofibroblastos/fisiología , Uniones Estrechas/fisiología , Anfirregulina , Células CACO-2 , Comunicación Celular , Línea Celular Tumoral , Permeabilidad de la Membrana Celular , Proliferación Celular , Medios de Cultivo Condicionados , Familia de Proteínas EGF , Impedancia Eléctrica , Receptores ErbB/metabolismo , Humanos , Mucosa Intestinal/metabolismo , Ligandos
4.
Chem Biol ; 18(9): 1143-52, 2011 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-21944753

RESUMEN

PDZ domains are independently folded modules that typically mediate protein-protein interactions by binding to the C termini of their target proteins. However, in a few instances, PDZ domains have been reported to dimerize with other PDZ domains. To investigate this noncanonical-binding mode further, we used protein microarrays comprising virtually every mouse PDZ domain to systematically query all possible PDZ-PDZ pairs. We then used fluorescence polarization to retest and quantify interactions and coaffinity purification to test biophysically validated interactions in the context of their full-length proteins. Overall, we discovered 37 PDZ-PDZ interactions involving 46 PDZ domains (~30% of all PDZ domains tested), revealing that dimerization is a more frequently used binding mode than was previously appreciated. This suggests that many PDZ domains evolved to form multiprotein complexes by simultaneously interacting with more than one ligand.


Asunto(s)
Dominios PDZ , Proteínas/metabolismo , Animales , Línea Celular , Dimerización , Polarización de Fluorescencia , Humanos , Ratones , Análisis por Matrices de Proteínas , Unión Proteica , Mapas de Interacción de Proteínas , Proteínas/química , Proteoma/química , Proteoma/metabolismo
5.
Sci Signal ; 2(77): ra31, 2009 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-19567914

RESUMEN

The signaling network downstream of the ErbB family of receptors has been extensively targeted by cancer therapeutics; however, understanding the relative importance of the different components of the ErbB network is nontrivial. To explore the optimal way to therapeutically inhibit combinatorial, ligand-induced activation of the ErbB-phosphatidylinositol 3-kinase (PI3K) axis, we built a computational model of the ErbB signaling network that describes the most effective ErbB ligands, as well as known and previously unidentified ErbB inhibitors. Sensitivity analysis identified ErbB3 as the key node in response to ligands that can bind either ErbB3 or EGFR (epidermal growth factor receptor). We describe MM-121, a human monoclonal antibody that halts the growth of tumor xenografts in mice and, consistent with model-simulated inhibitor data, potently inhibits ErbB3 phosphorylation in a manner distinct from that of other ErbB-targeted therapies. MM-121, a previously unidentified anticancer therapeutic designed using a systems approach, promises to benefit patients with combinatorial, ligand-induced activation of the ErbB signaling network that are not effectively treated by current therapies targeting overexpressed or mutated oncogenes.


Asunto(s)
Fosfatidilinositol 3-Quinasas/metabolismo , Receptor ErbB-3/metabolismo , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales Humanizados , Receptores ErbB/metabolismo , Humanos , Ligandos , Ratones , Fosforilación , Unión Proteica , Receptor ErbB-3/inmunología , Transducción de Señal , Trasplante Heterólogo
6.
Mol Microbiol ; 55(4): 1025-33, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15686551

RESUMEN

Potato scab is a globally important disease caused by polyphyletic plant pathogenic Streptomyces species. Streptomyces acidiscabies, Streptomyces scabies and Streptomyces turgidiscabies possess a conserved biosynthetic pathway for the nitrated dipeptide phytotoxin thaxtomin. These pathogens also possess the nec1 gene which encodes a necrogenic protein that is an independent virulence factor. In this article we describe a large (325-660 kb) pathogenicity island (PAI) conserved among these three plant pathogenic Streptomyces species. A partial DNA sequence of this PAI revealed the thaxtomin biosynthetic pathway, nec1, a putative tomatinase gene, and many mobile genetic elements. In addition, the PAI from S. turgidiscabies contains a plant fasciation (fas) operon homologous to and colinear with the fas operon in the plant pathogen Rhodococcus fascians. The PAI was mobilized during mating from S. turgidiscabies to the non-pathogens Streptomyces coelicolor and Streptomyces diastatochromogenes on a 660 kb DNA element and integrated site-specifically into a putative integral membrane lipid kinase. Acquisition of the PAI conferred a pathogenic phenotype on S. diastatochromogenes but not on S. coelicolor. This PAI is the first to be described in a Gram-positive plant pathogenic bacterium and is responsible for the emergence of new plant pathogenic Streptomyces species in agricultural systems.


Asunto(s)
Enfermedades de las Plantas/microbiología , Plantas/microbiología , Streptomyces/patogenicidad , Secuencia de Bases , ADN Bacteriano/genética , Enzimas/genética , Proteínas de Plantas/genética , Solanum tuberosum/microbiología , Streptomyces/clasificación , Streptomyces/genética , Virulencia
7.
Nature ; 429(6987): 79-82, 2004 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-15129284

RESUMEN

Nitric oxide (NO) is a potent intercellular signal in mammals that mediates key aspects of blood pressure, hormone release, nerve transmission and the immune response of higher organisms. Proteins homologous to full-length mammalian nitric oxide synthases (NOSs) are found in lower multicellular organisms. Recently, genome sequencing has shown that some bacteria contain genes coding for truncated NOS proteins; this is consistent with reports of NOS-like activities in bacterial extracts. Biological functions for bacterial NOSs are unknown, but have been presumed to be analogous to their role in mammals. Here we describe a gene in the plant pathogen Streptomyces turgidiscabies that encodes a NOS homologue, and we reveal its role in nitrating a dipeptide phytotoxin required for plant pathogenicity. High similarity between bacterial NOSs indicates a general function in biosynthetic nitration; thus, bacterial NOSs constitute a new class of enzymes. Here we show that the primary function of Streptomyces NOS is radically different from that of mammalian NOS. Surprisingly, mammalian NO signalling and bacterial biosynthetic nitration share an evolutionary origin.


Asunto(s)
Arginina/análogos & derivados , Indoles/metabolismo , Nitratos/metabolismo , Óxido Nítrico Sintasa/metabolismo , Piperazinas/metabolismo , Streptomyces/enzimología , Arginina/metabolismo , Eliminación de Gen , Genes Bacterianos/genética , Indoles/química , Datos de Secuencia Molecular , Óxido Nítrico Sintasa/genética , Nitritos/metabolismo , Nitrógeno/metabolismo , Piperazinas/química , Plantas/efectos de los fármacos , Streptomyces/genética , Toxinas Biológicas/química , Toxinas Biológicas/metabolismo
8.
Plant Dis ; 81(8): 836-846, 1997 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30866367
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA