Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 13(14)2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37513072

RESUMEN

We report silicon nanowire (SiNW) growth with a novel Cu-In bimetallic catalyst using a plasma-enhanced chemical vapor deposition (PECVD) method. We study the structure of the catalyst nanoparticles (NPs) throughout a two-step process that includes a hydrogen plasma pre-treatment at 200 °C and the SiNW growth itself in a hydrogen-silane plasma at 420 °C. We show that the H2-plasma induces a coalescence of the Cu-rich cores of as-deposited thermally evaporated NPs that does not occur when the same annealing is applied without plasma. The SiNW growth process at 420 °C induces a phase transformation of the catalyst cores to Cu7In3; while a hydrogen plasma treatment at 420 °C without silane can lead to the formation of the Cu11In9 phase. In situ transmission electron microscopy experiments show that the SiNWs synthesis with Cu-In bimetallic catalyst NPs follows an essentially vapor-solid-solid process. By adjusting the catalyst composition, we manage to obtain small-diameter SiNWs-below 10 nm-among which we observe the metastable hexagonal diamond phase of Si, which is predicted to have a direct bandgap.

2.
J Biomed Opt ; 27(8)2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35962466

RESUMEN

SIGNIFICANCE: Line-field confocal optical coherence tomography (LC-OCT) is a recently introduced high-resolution imaging modality based on a combination of low-coherence optical interferometry and reflectance confocal optical microscopy with line illumination and line detection. Capable of producing three-dimensional (3D) images of the skin with cellular resolution, in vivo, LC-OCT has been mainly applied in dermatology and dermo-cosmetology. The LC-OCT devices capable of acquiring 3D images reported so far are based on a Linnik interferometer using two identical microscope objectives. In this configuration, LC-OCT cannot be designed to be a very compact and light device, and the image acquisition speed is limited. AIM: The objective of this work was to develop a more compact and lighter LC-OCT device that is capable of acquiring images faster without significant degradation of the resolution and with optimized detection sensitivity. APPROACH: We developed an LC-OCT device based on a Mirau interferometer using a single objective. Dynamic adjustment of the camera frequency during the depth scan is implemented, using a faster camera and a more powerful light source. The reflectivity of the beam-splitter in the Mirau interferometer was optimized to maximize the detection sensitivity. A galvanometer scanner was incorporated into the device for scanning the illumination line laterally. A stack of adjacent B-scans, constituting a 3D image, can thus be acquired. RESULTS: The device is able to acquire and display B-scans at 17 fps. 3D images with a quasi-isotropic resolution of ∼1.5 µm (1.3, 1.9, and 1.1 µm in the x , y, and z directions, respectively) over a field of 940 µm × 600 µm × 350 µm (x × y × z) can be obtained. 3D imaging of human skin at cellular resolution, in vivo, is reported. CONCLUSIONS: The acquisition rate of the B-scans, at 17 fps, is unprecedented in LC-OCT. Compared with the conventional LC-OCT devices based on a Linnik interferometer, the reported Mirau-based LC-OCT device can acquire B-scans ∼2 times faster. With potential advantages in terms of compactness and weight, a Mirau-based device could easily be integrated into a smaller and lighter handheld probe for use by dermatologists in their daily medical practice.


Asunto(s)
Interferometría , Tomografía de Coherencia Óptica , Humanos , Imagenología Tridimensional/métodos , Microscopía Confocal , Piel/diagnóstico por imagen , Tomografía de Coherencia Óptica/métodos
3.
Opt Express ; 28(11): 15753-15760, 2020 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-32549412

RESUMEN

The problem of protection of the front surface silver mirrors is a very important one for a number of applications. The atomic layer deposition (ALD) technique provides an efficient way to form a coating, protecting the sensitive surface of silver from a corrosive and oxidizing environment. Moreover, the ALD layer provides extremely high conformality (even when deposited over high aspect ratio features) and has high integrity, efficiently blocking foreign species diffusion to the silver-overcoat interface. We tested the efficiency of the protection of silver mirrors against oxygen plasma exposure by the ALD-deposited Al2O3 layers by combining spectroscopic ellipsometry, reflection measurements and pulsed glow-discharge optical emission spectroscopy (GD-OES) profiling. We have found that for optimal protection, the thickness of the ALD deposited layer should exceed at least 15 nm (about 150 ALD cycles at 150°C). We have also demonstrated that the deposition of 15 nm of a protective ALD-deposited Al2O3 layer does not affect the absolute reflectivity of a silver mirror in the spectral range 320 -2500 nm.

4.
Adv Colloid Interface Sci ; 275: 102080, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31809990

RESUMEN

Printed organic electronics has attracted considerable interest in recent years as it enables the fabrication of large-scale, low-cost electronic devices, and thus offers significant possibilities in terms of developing new applications in various fields. Easy processing is a prerequisite for the development of low-cost, flexible and printed plastics electronics. Among processing techniques, meniscus guided coating methods are considered simple, efficient, and low-cost methods to fabricate electronic devices in industry. One of the major challenges is the control of thin film morphology, molecular orientations and directional alignment of polymer films during coating processes. Herein, the recent progress of emerging field of meniscus guided printing organic semiconductor materials is discussed. The first part of this report briefly summarizes recent advances in meniscus guided coating techniques. The second part discusses periodic deposits and patterned deposition at moving contact lines, where the mass-transport influences film morphology due to convection at the triple contact line. The last section summarizes our strategy to fabricate large-scale patterning of π-conjugated polymers using meniscus guided method.

5.
Nanomaterials (Basel) ; 8(8)2018 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-30126184

RESUMEN

We study light trapping and parasitic losses in hydrogenated amorphous silicon thin film solar cells fabricated by plasma-enhanced chemical vapor deposition on nanostructured back reflectors. The back reflectors are patterned using polystyrene assisted lithography. By using O2 plasma etching of the polystyrene spheres, we managed to fabricate hexagonal nanostructured back reflectors. With the help of rigorous modeling, we study the parasitic losses in different back reflectors, non-active layers, and last but not least the light enhancement effect in the silicon absorber layer. Moreover, simulation results have been checked against experimental data. We have demonstrated hexagonal nanostructured amorphous silicon thin film solar cells with a power conversion efficiency of 7.7% and around 34.7% enhancement of the short-circuit current density, compared with planar amorphous silicon thin film solar cells.

6.
J Chem Phys ; 140(23): 234706, 2014 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-24952559

RESUMEN

We report on the growth of microcrystalline silicon films from the dissociation of SiF4/H2/Ar gas mixtures. For this growth chemistry, the formation of HF molecules provides a clear signature of the amorphous to microcrystalline growth transition. Depositing films from silicon tetrafluoride requires the removal of F produced by SiF4 dissociation, and this removal is promoted by the addition of H2 which strongly reacts with F to form HF molecules. At low H2 flow rates, the films grow amorphous as all the available hydrogen is consumed to form HF. Above a critical flow rate, corresponding to the full removal of F, microcrystalline films are produced as there is an excess of atomic hydrogen in the plasma. A simple yet accurate phenomenological model is proposed to explain the SiF4/H2 plasma chemistry in accordance with experimental data. This model provides some rules of thumb to achieve high deposition rates for microcrystalline silicon, namely, that increased RF power must be balanced by an increased H2 flow rate.

7.
Appl Opt ; 46(31): 7776-9, 2007 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-17973023

RESUMEN

We present the study of the correlation between refractive index profiles and the optical response of rugate filters and multilayer mirrors. The conventionally used method in multilayer mirrors for ripple suppression in the passband will be compared with a similar simple method to remove the rugate filter sidelobes without apodization. The resulting layers are compared in performance with a typical quintic matching layer. An example based on silicon oxynitride alloys with refractive indices ranging between 1.47 and 1.83 was designed and deposited.

8.
Opt Express ; 15(5): 2033-46, 2007 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-19532441

RESUMEN

The feasibility of metrological characterization of the one-dimensional (1D) holographic gratings, used in the nanoimprint molding tool fabrication step, by spectroscopic Mueller polarimetry in conical diffraction is investigated. The studied samples correspond to two different steps of the replicated diffraction grating fabrication process. We characterized master gratings that consist of patterned resist layer on chromium-covered glass substrate and complementary (replica) gratings made of nickel. The profiles of the gratings obtained by fitting the experimental spectra of Mueller matrix coefficients taken at different azimuthal angles were confirmed by atomic force microscopy (AFM) measurements. The calculated profiles of corresponding master and replica gratings are found to be complementary. We conclude that the Mueller polarimetry, as a fast and non-contact optical characterization technique, can provide the basis for the metrology of the molding tool fabrication step in the nanoimprint technique.

9.
Appl Opt ; 41(22): 4519-25, 2002 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-12153080

RESUMEN

A direct numerical inversion method is applied to the monitoring of thin-film growth. Several improvements of the method, including a correction for weakly absorbing materials, are presented. The method has been successfully applied to the inversion of the growth of constant-refractive-index layers andused for the process calibration of plasma-enhanced chemical vapor deposition of silicon oxynitrides. The validity of this calibration has been successfully tested on a linear index gradient and quintic matching layer between a polycarbonate substrate and a scratch-resistant coating.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA