Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 11695, 2024 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-38778133

RESUMEN

The agricultural fungicide cymoxanil (CMX) is commonly used in the treatment of plant pathogens, such as Phytophthora infestans. Although the use of CMX is widespread throughout the agricultural industry and internationally, the exact mechanism of action behind this fungicide remains unclear. Therefore, we sought to elucidate the biocidal mechanism underlying CMX. This was accomplished by first performing a large-scale chemical-genomic screen comprising the 4000 haploid non-essential gene deletion array of the yeast Saccharomyces cerevisiae. We found that gene families related to de novo purine biosynthesis and ribonucleoside synthesis were enriched in the presence of CMX. These results were confirmed through additional spot-test and colony counting assays. We next examined whether CMX affects RNA biosynthesis. Using qRT-PCR and expression assays, we found that CMX appears to target RNA biosynthesis possibly through the yeast dihydrofolate reductase (DHFR) enzyme Dfr1. To determine whether DHFR is a target of CMX, we performed an in-silico molecular docking assay between CMX and yeast, human, and P. infestans DHFR. The results suggest that CMX directly interacts with the active site of all tested forms of DHFR using conserved residues. Using an in vitro DHFR activity assay we observed that CMX inhibits DHFR activity in a dose-dependent relationship.


Asunto(s)
Fungicidas Industriales , Simulación del Acoplamiento Molecular , Proteínas de Saccharomyces cerevisiae , Tetrahidrofolato Deshidrogenasa , Humanos , Antagonistas del Ácido Fólico/farmacología , Fungicidas Industriales/farmacología , ARN/biosíntesis , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Tetrahidrofolato Deshidrogenasa/metabolismo , Tetrahidrofolato Deshidrogenasa/genética
2.
Comput Biol Chem ; 71: 180-187, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29112936

RESUMEN

The production of anti-Zika virus (ZIKV) therapeutics has become increasingly important as the propagation of the devastating virus continues largely unchecked. Notably, a causal relationship between ZIKV infection and neurodevelopmental abnormalities has been widely reported, yet a specific mechanism underlying impaired neurological development has not been identified. Here, we report on the design of several synthetic competitive inhibitory peptides against key pathogenic ZIKV proteins through the prediction of protein-protein interactions (PPIs). Often, PPIs between host and viral proteins are crucial for infection and pathogenesis, making them attractive targets for therapeutics. Using two complementary sequence-based PPI prediction tools, we first produced a comprehensive map of predicted human-ZIKV PPIs (involving 209 human protein candidates). We then designed several peptides intended to disrupt the corresponding host-pathogen interactions thereby acting as anti-ZIKV therapeutics. The data generated in this study constitute a foundational resource to aid in the multi-disciplinary effort to combat ZIKV infection, including the design of additional synthetic proteins.


Asunto(s)
Diseño de Fármacos , Péptidos/farmacología , Proteínas Virales/antagonistas & inhibidores , Virus Zika/efectos de los fármacos , Humanos , Pruebas de Sensibilidad Microbiana , Péptidos/síntesis química , Péptidos/química , Unión Proteica/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA