Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Genetics ; 194(1): 101-15, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23436180

RESUMEN

Nucleostemin 3 (NS3) is an evolutionarily conserved protein with profound roles in cell growth and viability. Here we analyze cell-autonomous and non-cell-autonomous growth control roles of NS3 in Drosophila and demonstrate its GTPase activity using genetic and biochemical assays. Two null alleles of ns3, and RNAi, demonstrate the necessity of NS3 for cell autonomous growth. A hypomorphic allele highlights the hypersensitivity of neurons to lowered NS3 function. We propose that NS3 is the functional ortholog of yeast and human Lsg1, which promotes release of the nuclear export adapter from the large ribosomal subunit. Release of the adapter and its recycling to the nucleus are essential for sustained production of ribosomes. The ribosome biogenesis role of NS3 is essential for proper rates of translation in all tissues and is necessary for functions of growth-promoting neurons.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Proteínas de Unión al GTP/metabolismo , Ribosomas/metabolismo , Alelos , Secuencia de Aminoácidos , Animales , Núcleo Celular/metabolismo , Supervivencia Celular , Dopamina/metabolismo , Proteínas de Drosophila/química , Drosophila melanogaster/citología , GTP Fosfohidrolasas/metabolismo , Proteínas de Unión al GTP/química , Sitios Genéticos/genética , Humanos , Larva/citología , Larva/crecimiento & desarrollo , Datos de Secuencia Molecular , Mutación/genética , Fenotipo , Estructura Terciaria de Proteína , Interferencia de ARN , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Ribosómicas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Homología de Secuencia de Aminoácido
2.
J Cell Biol ; 197(6): 747-59, 2012 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-22689654

RESUMEN

Eukaryotic ribosomes are preassembled in the nucleus and mature in the cytoplasm. Release of the antiassociation factor Tif6 by the translocase-like guanosine triphosphatase Efl1 is a critical late maturation step. In this paper, we show that a loop of Rpl10 that embraces the P-site transfer ribonucleic acid was required for release of Tif6, 90 Å away. Mutations in this P-site loop blocked 60S maturation but were suppressed by mutations in Tif6 or Efl1. Molecular dynamics simulations of the mutant Efl1 proteins suggest that they promote a conformation change in Efl1 equivalent to changes that elongation factor G and eEF2 undergo during translocation. These results identify molecular signaling from the P-site to Tif6 via Efl1, suggesting that the integrity of the P-site is interrogated during maturation. We propose that Efl1 promotes a functional check of the integrity of the 60S subunit before its first round of translation.


Asunto(s)
Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Dominio Catalítico , Núcleo Celular/metabolismo , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Modelos Moleculares , Simulación de Dinámica Molecular , Mutación , Conformación Proteica , ARN Mensajero/metabolismo , Proteína Ribosómica L10 , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
Mol Cell ; 39(2): 196-208, 2010 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-20670889

RESUMEN

In eukaryotic cells the final maturation of ribosomes occurs in the cytoplasm, where trans-acting factors are removed and critical ribosomal proteins are added for functionality. Here, we have carried out a comprehensive analysis of cytoplasmic maturation, ordering the known steps into a coherent pathway. Maturation is initiated by the ATPase Drg1. Downstream, assembly of the ribosome stalk is essential for the release of Tif6. The stalk recruits GTPases during translation. Because the GTPase Efl1, which is required for the release of Tif6, resembles the translation elongation factor eEF2, we suggest that assembly of the stalk recruits Efl1, triggering a step in 60S biogenesis that mimics aspects of translocation. Efl1 could thereby provide a mechanism to functionally check the nascent subunit. Finally, the release of Tif6 is a prerequisite for the release of the nuclear export adaptor Nmd3. Establishing this pathway provides an important conceptual framework for understanding ribosome maturation.


Asunto(s)
Citoplasma/metabolismo , Biosíntesis de Proteínas/fisiología , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Citoplasma/genética , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/metabolismo , Células HeLa , Humanos , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
J Cell Biol ; 189(7): 1079-86, 2010 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-20584915

RESUMEN

The nucleocytoplasmic shuttling protein Nmd3 is an adaptor for export of the 60S ribosomal subunit from the nucleus. Nmd3 binds to nascent 60S subunits in the nucleus and recruits the export receptor Crm1 to facilitate passage through the nuclear pore complex. In this study, we present a cryoelectron microscopy (cryo-EM) reconstruction of the 60S subunit in complex with Nmd3 from Saccharomyces cerevisiae. The density corresponding to Nmd3 is directly visible in the cryo-EM map and is attached to the regions around helices 38, 69, and 95 of the 25S ribosomal RNA (rRNA), the helix 95 region being adjacent to the protein Rpl10. We identify the intersubunit side of the large subunit as the binding site for Nmd3. rRNA protection experiments corroborate the structural data. Furthermore, Nmd3 binding to 60S subunits is blocked in 80S ribosomes, which is consistent with the assigned binding site on the subunit joining face. This cryo-EM map is a first step toward a molecular understanding of the functional role and release mechanism of Nmd3.


Asunto(s)
Transporte Activo de Núcleo Celular , Proteínas de Unión al ARN/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sitios de Unión , Microscopía por Crioelectrón , Proteínas Nucleares/metabolismo , Unión Proteica , ARN Ribosómico/metabolismo
5.
J Biol Chem ; 282(45): 32630-9, 2007 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-17761675

RESUMEN

Yeast Rpl10 belongs to the L10e family of ribosomal proteins. In the large (60 S) subunit, Rpl10 is positioned in a cleft between the central protuberance and the GTPase-activating center. It is loaded into the 60 S subunit at a late step in maturation. We have shown previously that Rpl10 is required for the release of the Crm1-dependent nuclear export adapter Nmd3, an event that also requires the cytoplasmic GTPase Lsg1. Here we have carried out an extensive mutational analysis of Rpl10 to identify mutations that would allow us to map activities to distinct domains of the protein to begin to understand the molecular interaction between Rpl10 and Nmd3. We found that mutations in a central loop (amino acids 102-112) had a significant impact on the release of Nmd3. This loop is unstructured in the crystal and solution structures of prokaryotic Rpl10 orthologs. Thus, the loop is not necessary for stable interaction of Rpl10 with the ribosome, suggesting that it plays a dynamic role in ribosome function or regulating the association of other factors. We also found that mutant Rpl10 proteins were engineered to be unable to bind to the ribosome accumulated in the nucleus. This was unexpected and may suggest a nuclear role for Rpl10.


Asunto(s)
Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Animales , Centrifugación por Gradiente de Densidad , Secuencia Conservada , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Mutación/genética , Fenotipo , Unión Proteica , Estructura Terciaria de Proteína , Proteína Ribosómica L10 , Proteínas Ribosómicas/química , Saccharomyces cerevisiae/química , Alineación de Secuencia
6.
J Biol Chem ; 281(48): 36579-87, 2006 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-17015443

RESUMEN

Nuclear export of the large ribosomal subunit requires the adapter protein Nmd3p to provide a leucine-rich nuclear export signal that is recognized by the export receptor Crm1. Nmd3p binds to the pre-60 S subunit in the nucleus. After export to the cytoplasm, the release of Nmd3p depends on the ribosomal protein Rpl10p and the GTPase Lsg1p. Here, we have carried out a mutational analysis of Nmd3 to better define the domains responsible for nucleocytoplasmic shuttling and ribosome binding. We show that mutations in two regions of Nmd3p affect 60 S binding, suggesting that its binding to the subunit is multivalent.


Asunto(s)
Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Ribosomas/química , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Transporte Activo de Núcleo Celular , Alelos , Secuencia de Aminoácidos , Análisis Mutacional de ADN , Eliminación de Gen , Modelos Biológicos , Modelos Genéticos , Datos de Secuencia Molecular , Mutación , Plásmidos/metabolismo , Mutación Puntual , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA