RESUMEN
A random transposition mutant library of B. gladioli UAPS07070 was analyzed for searching mutants with impaired microbial antagonism. Three derivates showed diminished antimicrobial activity against a sensitive strain. The mutated loci showed high similarity to the quorum sensing genes of the AHL-synthase and its regulator. Another mutant was affected in a gene coding for a LysrR-type transcriptional regulator. The production of toxoflavin, the most well known antimicrobial-molecule and a major virulence factor of plant-pathogenic B. glumae and B. gladioli was explored. The absence of a yellowish pigment related to toxoflavin and the undetectable transcription of toxA in the mutants indicated the participation of the QS system and of the LysR-type transcriptional regulator in the regulation of toxoflavin. Additionally, those genes were found to be related to the swarming phenotype. Lettuce inoculated with the AHL synthase and the lysR mutants showed less severe symptoms. We present evidence of the participation of both, the quorum sensing and for the first time, of a LysR-type transcriptional regulator in antibiosis and swarming phenotype in a strain of B. gladioli.
RESUMEN
Diazotrophic bacteria were isolated, in two different years, from the rhizosphere and rhizoplane of coffee (Coffea arabica L.) plants cultivated in Mexico; they were designated as type DOR and type SAd isolates. They showed characteristics of the family Acetobacteraceae, having some features in common with Gluconacetobacter (formerly Acetobacter) diazotrophicus, the only known N2-fixing species of the acetic acid bacteria, but they differed from this species with regard to several characteristics. Type DOR isolates can be differentiated phenotypically from type SAd isolates. Type DOR isolates and type SAd isolates can both be differentiated from Gluconacetobacter diazotrophicus by their growth features on culture media, their use of amino acids as nitrogen sources and their carbon-source usage. These results, together with the electrophoretic mobility patterns of metabolic enzymes and amplified rDNA restriction analysis, suggested that the type DOR and type SAd isolates represent two novel N2-fixing species. Comparative analysis of the 16S rRNA sequences revealed that strains CFN-Cf55T (type DOR isolate) and CFN-Ca54T (type SAd isolate) were closer to Gluconacetobacter diazotrophicus (both strains had sequence similarities of 98.3%) than to Gluconacetobacter liquefaciens, Gluconacetobacter sacchari (similarities < 98%) or any other acetobacteria. Strain CFN-Cf55T exhibited low levels of DNA-DNA reassociation with type SAd isolates (mean 42%) and strain CFN-Ca54T exhibited mean DNA-DNA reassociation of 39.5% with type DOR isolates. Strains CFN-Cf55T and CFN-Ca54T exhibited very low DNA reassociation levels, 7-21%, with other closely related acetobacterial species. On the basis of these results, two novel N2-fixing species are proposed for the family Acetobacteraceae, Gluconacetobacter johannae sp. nov. (for the type DOR isolates), with strain CFN-Cf55T (= ATCC 700987T = DSM 13595T) as the type strain, and Gluconacetobacter azotocaptans sp. nov. (for the type SAd isolates), with strain CFN-Ca54T (= ATCC 70098ST = DSM 13594T) as the type strain.
Asunto(s)
Acetobacteraceae/clasificación , Acetobacteraceae/aislamiento & purificación , Café/microbiología , Ácido Acético/metabolismo , Acetobacteraceae/genética , Acetobacteraceae/metabolismo , Secuencia de Bases , ADN Bacteriano/genética , ADN Ribosómico/genética , Genes Bacterianos , México , Datos de Secuencia Molecular , Fijación del Nitrógeno , Hibridación de Ácido Nucleico , Fenotipo , Filogenia , Especificidad de la Especie , Terminología como AsuntoRESUMEN
The genus Burkholderia comprises 19 species, including Burkholderia vietnamiensis which is the only known N(2)-fixing species of this bacterial genus. The first isolates of B. vietnamiensis were recovered from the rhizosphere of rice plants grown in a phytotron, but its existence in natural environments and its geographic distribution were not reported. In the present study, most N(2)-fixing isolates recovered from the environment of field-grown maize and coffee plants cultivated in widely separated regions of Mexico were phenotypically identified as B. cepacia using the API 20NE system. Nevertheless, a number of these isolates recovered from inside of maize roots, as well as from the rhizosphere and rhizoplane of maize and coffee plants, showed similar or identical features to those of B. vietnamiensis TVV75(T). These features include nitrogenase activity with 10 different carbon sources, identical or very similar nifHDK hybridization patterns, very similar protein electrophoregrams, identical amplified 16S rDNA restriction (ARDRA) profiles, and levels of DNA-DNA reassociation higher than 70% with total DNA from strain TVV75(T). Although the ability to fix N(2) is not reported to be a common feature among the known species of the genus Burkholderia, the results obtained show that many diazotrophic Burkholderia isolates analyzed showed phenotypic and genotypic features different from those of the known N(2)-fixing species B. vietnamiensis as well as from those of B. kururiensis, a bacterium identified in the present study as a diazotrophic species. DNA-DNA reassociation assays confirmed the existence of N(2)-fixing Burkholderia species different from B. vietnamiensis. In addition, this study shows the wide geographic distribution and substantial capability of N(2)-fixing Burkholderia spp. for colonizing diverse host plants in distantly separated environments.