Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Base de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
3.
Nat Commun ; 12(1): 4442, 2021 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-34290256

RESUMEN

The forward genetic screen is a powerful, unbiased method to gain insights into biological processes, yet this approach has infrequently been used in vivo in mammals because of high resource demands. Here, we use in vivo somatic Cas9 mutagenesis to perform an in vivo forward genetic screen in mice to identify regulators of cardiomyocyte (CM) maturation, the coordinated changes in phenotype and gene expression that occur in neonatal CMs. We discover and validate a number of transcriptional regulators of this process. Among these are RNF20 and RNF40, which form a complex that monoubiquitinates H2B on lysine 120. Mechanistic studies indicate that this epigenetic mark controls dynamic changes in gene expression required for CM maturation. These insights into CM maturation will inform efforts in cardiac regenerative medicine. More broadly, our approach will enable unbiased forward genetics across mammalian organ systems.


Asunto(s)
Epigénesis Genética , Miocitos Cardíacos/fisiología , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Animales Recién Nacidos , Sistemas CRISPR-Cas , Regulación del Desarrollo de la Expresión Génica , Histonas/metabolismo , Ratones , Mutagénesis , Miocitos Cardíacos/metabolismo , Fenotipo , Reproducibilidad de los Resultados , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
4.
J Cardiovasc Dev Dis ; 7(3)2020 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-32824919

RESUMEN

BACKGROUND: Mitral valve prolapse (MVP) affects 3-6% of the total population including those with connective tissue disorders. Treatment is limited, and patients commonly require surgery which can be impermanent and insuperable. Abnormal prolapse of mitral valve leaflets into the left atria is caused by disturbances to the composition and organization of the extracellular matrix (ECM), that weaken biomechanics. This process, known as myxomatous degeneration is characterized by an abnormal accumulation of proteoglycans, in addition to collagen fiber disruption and elastic fiber fragmentation. The underlying mechanisms that promote myxomatous degeneration to the point of biomechanical failure are unknown, but previous histological studies of end-stage diseased tissue have reported abnormal α-smooth muscle actin (SMA) in a subset of heart valve interstitial cells (VICs); however, the contribution of these abnormal cells to MVP pathogenesis has not been extensively examined. METHODS: In vivo and in vitro approaches were used. Mice harboring a Fbn1C1039G mutation mimic human Marfan Syndrome and develop MVP. Using these mice, temporal and spatial changes in SMA expression relative to myxomatous degeneration were examined using histological techniques. In parallel in vitro experiments, SMA expression was downregulated in primary porcine mitral VICs directly using siRNA, and indirectly using the actin depolymerizing agent Latrunculin A. In addition, the regulation of SMA in VICs by mechanical stiffness was explored relative to ECM remodeling. RESULTS: We show, in mitral valves from Fbn1C1039G/+ mice, that abnormal increases in SMA expression in VICs are evident during early postnatal stages of disease, prior to significant myxomatous degeneration as indicated at later stages by increased proteoglycans and collagen type I (Col1a1). Furthermore, abnormal SMA expression continues to increase during the course of pathogenesis and is localized to the mid belly region of the mitral valve leaflets from 10 weeks. Using an in vitro approach, we demonstrate that reduced SMA function by direct siRNA or indirect Latrunculin A treatment attenuates proteoglycan and Col1a1 expression in porcine mitral VICs. While upstream, we provide insights to show that SMA is regulated by mechanical tension in VICs to promote changes in ECM homeostasis. CONCLUSIONS: Together, our data show that in VICs, SMA, an actin binding protein, is important for mediating ECM remodeling associated with phenotypes observed in myxomatous degeneration, and its expression is regulated by mechanical tension. These novel insights could inform the development of future non-surgical therapeutics to halt the progression of mitral valve degeneration thereby avoiding end-stage prolapse.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA