Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
bioRxiv ; 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38260645

RESUMEN

Viruses compete with each other for limited cellular resources, and some viruses deliver defense mechanisms that protect the host from competing genetic parasites. PARIS is a defense system, often encoded in viral genomes, that is composed of a 53 kDa ABC ATPase (AriA) and a 35 kDa TOPRIM nuclease (AriB). Here we show that AriA and AriB assemble into a 425 kDa supramolecular immune complex. We use cryo-EM to determine the structure of this complex which explains how six molecules of AriA assemble into a propeller-shaped scaffold that coordinates three subunits of AriB. ATP-dependent detection of foreign proteins triggers the release of AriB, which assembles into a homodimeric nuclease that blocks infection by cleaving the host tRNALys. Phage T5 subverts PARIS immunity through expression of a tRNALys variant that prevents PARIS-mediated cleavage, and thereby restores viral infection. Collectively, these data explain how AriA functions as an ATP-dependent sensor that detects viral proteins and activates the AriB toxin. PARIS is one of an emerging set of immune systems that form macromolecular complexes for the recognition of foreign proteins, rather than foreign nucleic acids.

2.
Nat Struct Mol Biol ; 30(11): 1675-1685, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37710013

RESUMEN

Bacteria and archaea acquire resistance to viruses and plasmids by integrating fragments of foreign DNA into the first repeat of a CRISPR array. However, the mechanism of site-specific integration remains poorly understood. Here, we determine a 560-kDa integration complex structure that explains how Pseudomonas aeruginosa Cas (Cas1-Cas2/3) and non-Cas proteins (for example, integration host factor) fold 150 base pairs of host DNA into a U-shaped bend and a loop that protrude from Cas1-2/3 at right angles. The U-shaped bend traps foreign DNA on one face of the Cas1-2/3 integrase, while the loop places the first CRISPR repeat in the Cas1 active site. Both Cas3 proteins rotate 100 degrees to expose DNA-binding sites on either side of the Cas2 homodimer, which each bind an inverted repeat motif in the leader. Leader sequence motifs direct Cas1-2/3-mediated integration to diverse repeat sequences that have a 5'-GT. Collectively, this work reveals new DNA-binding surfaces on Cas2 that are critical for DNA folding and site-specific delivery of foreign DNA.


Asunto(s)
Proteínas Asociadas a CRISPR , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Proteínas Asociadas a CRISPR/metabolismo , ADN/química , Sitios de Unión , Plásmidos , Sistemas CRISPR-Cas/genética
3.
CRISPR J ; 6(3): 216-221, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37042651

RESUMEN

Clustered regularly interspaced short palindromic repeats (CRISPRs) and their associated genes (cas) are essential components of adaptive immune systems that protect bacteria and archaea from viral infection. CRISPR-Cas systems are found in about 40% of bacterial and 85% of archaeal genomes, but not in eukaryotic genomes. Recently, an article published in Communications Biology reported the identification of 12,572 putative CRISPRs in the human genome, which they call "hCRISPR." In this study, we attempt to reproduce this analysis and show that repetitive elements identified as putative CRISPR loci in the human genome contain neither the repeat-spacer-repeat architecture nor the cas genes characteristic of functional CRISPR systems.


Asunto(s)
Genoma Bacteriano , Genoma Humano , Humanos , Genoma Humano/genética , Sistemas CRISPR-Cas/genética , Edición Génica , Bacterias/genética
4.
Nat Commun ; 13(1): 7762, 2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-36522348

RESUMEN

Type-III CRISPR-Cas systems have recently been adopted for sequence-specific detection of SARS-CoV-2. Here, we repurpose the type III-A CRISPR complex from Thermus thermophilus (TtCsm) for programmable capture and concentration of specific RNAs from complex mixtures. The target bound TtCsm complex generates two cyclic oligoadenylates (i.e., cA3 and cA4) that allosterically activate ancillary nucleases. We show that both Can1 and Can2 nucleases cleave single-stranded RNA, single-stranded DNA, and double-stranded DNA in the presence of cA4. We integrate the Can2 nuclease with type III-A RNA capture and concentration for direct detection of SARS-CoV-2 RNA in nasopharyngeal swabs with 15 fM sensitivity. Collectively, this work demonstrates how type-III CRISPR-based RNA capture and concentration simultaneously increases sensitivity, limits time to result, lowers cost of the assay, eliminates solvents used for RNA extraction, and reduces sample handling.


Asunto(s)
COVID-19 , Sistemas CRISPR-Cas , ARN Viral , Humanos , COVID-19/diagnóstico , ADN , Endonucleasas/metabolismo , ARN Viral/aislamiento & purificación , SARS-CoV-2 , Thermus thermophilus
5.
Res Sq ; 2022 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-35475170

RESUMEN

Type-III CRISPR-Cas systems have recently been adopted for sequence-specific detection of SARS-CoV-2. Here, we make two major advances that simultaneously limit sample handling and significantly enhance the sensitivity of SARS-CoV-2 RNA detection directly from patient samples. First, we repurpose the type III-A CRISPR complex from Thermus thermophilus (TtCsm) for programmable capture and concentration of specific RNAs from complex mixtures. The target bound TtCsm complex primarily generates two cyclic oligoadenylates (i.e., cA3 and cA4) that allosterically activate ancillary nucleases. To improve sensitivity of the diagnostic, we identify and test several ancillary nucleases (i.e., Can1, Can2, and NucC). We show that Can1 and Can2 are activated by both cA3 and cA4, and that different activators trigger changes in the substrate specificity of these nucleases. Finally, we integrate the type III-A CRISPR RNA-guided capture technique with the Can2 nuclease for 90 fM (5x104 copies/ul) detection of SARS-CoV-2 RNA directly from nasopharyngeal swab samples.

6.
Curr Biol ; 31(16): 3515-3524.e6, 2021 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-34174210

RESUMEN

CRISPR-associated proteins (Cas1 and Cas2) integrate foreign DNA at the "leader" end of CRISPR loci. Several CRISPR leader sequences are reported to contain a binding site for a DNA-bending protein called integration host factor (IHF). IHF-induced DNA bending kinks the leader of type I-E CRISPRs, recruiting an upstream sequence motif that helps dock Cas1-2 onto the first repeat of the CRISPR locus. To determine the prevalence of IHF-directed CRISPR adaptation, we analyzed 15,274 bacterial and archaeal CRISPR leaders. These experiments reveal multiple IHF binding sites and diverse upstream sequence motifs in a subset of the I-C, I-E, I-F, and II-C CRISPR leaders. We identify subtype-specific motifs and show that the phase of these motifs is critical for CRISPR adaptation. Collectively, this work clarifies the prevalence and mechanism(s) of IHF-dependent CRISPR adaptation and suggests that leader sequences and adaptation proteins may coevolve under the selective pressures of foreign genetic elements like plasmids or phages.


Asunto(s)
Proteínas Asociadas a CRISPR , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Proteínas Asociadas a CRISPR/genética , Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , ADN , Endonucleasas/genética , Endonucleasas/metabolismo
7.
Cell Rep Med ; 1(6): 100098, 2020 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-32904687

RESUMEN

SARS-CoV-2 has recently been detected in feces, which indicates that wastewater may be used to monitor viral prevalence in the community. Here, we use RT-qPCR to monitor wastewater for SARS-CoV-2 RNA over a 74-day time course. We show that changes in SARS-CoV-2 RNA concentrations follow symptom onset gathered by retrospective interview of patients but precedes clinical test results. In addition, we determine a nearly complete (98.5%) SARS-CoV-2 genome sequence from wastewater and use phylogenetic analysis to infer viral ancestry. Collectively, this work demonstrates how wastewater can be used as a proxy to monitor viral prevalence in the community and how genome sequencing can be used for genotyping viral strains circulating in a community.

8.
medRxiv ; 2020 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-32511611

RESUMEN

SARS-CoV-2 has recently been detected in feces, which indicates that wastewater may be used to monitor viral prevalence in the community. Here we use RT-qPCR to monitor wastewater for SARS-CoV-2 RNA over a 52-day time course. We show that changes in SARS-CoV-2 RNA concentrations correlate with local COVID-19 epidemiological data (R2=0.9), though detection in wastewater trails symptom onset dates by 5-8 days. We determine a near complete (98.5%) SARS-CoV-2 genome sequence from the wastewater and use phylogenic analysis to infer viral ancestry. Collectively, this work demonstrates how wastewater can be used as a proxy to monitor viral prevalence in the community and how genome sequencing can be used for high-resolution genotyping of the predominant strains circulating in a community.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA