RESUMEN
The biological mediators which initiate lung injury in extremely preterm infants during early postnatal life remain largely unidentified, limiting opportunities for early treatment and diagnosis. This exploratory study used SWATH-mass spectrometry to identify bronchopulmonary dysplasia (BPD)-specific changes in protein abundance in plasma samples obtained in the first 72 hours of life from extremely preterm infants and bioinformatic analysis to identify BPD-related biological categories and pathways. Lasty, binary logistic regression analysis was used to test the BPD predictive potential of a base model alone (gestational age, birth weight, sex) and with the protein biomarker added, with bootstrap resampling used to internally validate protein predictors and adjust for overoptimism. We observed disturbance of key processes including coagulation, complement activation, development and extracellular matrix organisation in the first days of life in extremely preterm infants who were later diagnosed with BPD. In the BPD prediction analysis, 49 plasma proteins were identified which when each singularly was combined with birth characteristics had a C-index of 0.65-0.84 (optimism-adjusted C-index) suggesting predictive potential for BPD outcomes. Taken together, this study demonstrates that alterations in plasma proteins can be detected from 4 hours of age in extremely preterm infants who later develop BPD and that protein biomarkers when combined with three birth characteristics have the potential to predict BPD development within the first 72 hours of life.
RESUMEN
AIMS: Prevention of human hypertension is an important challenge and has been achieved in experimental models. Brief treatment with renin-angiotensin system (RAS) inhibitors permanently reduces the genetic hypertension of the spontaneously hypertensive rat (SHR). The kidney is involved in this fascinating phenomenon, but relevant changes in gene expression are unknown. METHODS AND RESULTS: In SHR, we studied the effect of treatment between 10 and 14 weeks of age with the angiotensin receptor blocker, losartan, or the angiotensin-converting enzyme inhibitor, perindopril [with controls for non-specific effects of lowering blood pressure (BP)], on differential RNA expression, DNA methylation, and renin immunolabelling in the kidney at 20 weeks of age. RNA sequencing revealed a six-fold increase in renin gene (Ren) expression during losartan treatment (P < 0.0001). Six weeks after losartan, arterial pressure remained lower (P = 0.006), yet kidney Ren showed reduced expression by 23% after losartan (P = 0.03) and by 43% after perindopril (P = 1.4 × 10-6) associated with increased DNA methylation (P = 0.04). Immunolabelling confirmed reduced cortical renin after earlier RAS blockade (P = 0.002). RNA sequencing identified differential expression of mRNAs, miRNAs, and lncRNAs with evidence of networking and co-regulation. These included 13 candidate genes (Grhl1, Ammecr1l, Hs6st1, Nfil3, Fam221a, Lmo4, Adamts1, Cish, Hif3a, Bcl6, Rad54l2, Adap1, Dok4), the miRNA miR-145-3p, and the lncRNA AC115371. Gene ontogeny analyses revealed that these networks were enriched with genes relevant to BP, RAS, and the kidneys. CONCLUSION: Early RAS inhibition in SHR resets genetic pathways and networks resulting in a legacy of reduced Ren expression and BP persisting for a minimum of 6 weeks.
Asunto(s)
Bloqueadores del Receptor Tipo 1 de Angiotensina II , Inhibidores de la Enzima Convertidora de Angiotensina , Antihipertensivos , Metilación de ADN , Modelos Animales de Enfermedad , Redes Reguladoras de Genes , Hipertensión , Riñón , Losartán , Perindopril , Ratas Endogámicas SHR , Sistema Renina-Angiotensina , Renina , Animales , Ratas , Bloqueadores del Receptor Tipo 1 de Angiotensina II/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Antihipertensivos/farmacología , Presión Arterial/efectos de los fármacos , Presión Sanguínea/efectos de los fármacos , Presión Sanguínea/genética , Metilación de ADN/efectos de los fármacos , Epigénesis Genética/efectos de los fármacos , Regulación de la Expresión Génica , Hipertensión/fisiopatología , Hipertensión/genética , Hipertensión/tratamiento farmacológico , Hipertensión/metabolismo , Riñón/metabolismo , Riñón/efectos de los fármacos , Losartán/farmacología , Perindopril/farmacología , Renina/genética , Renina/metabolismo , Sistema Renina-Angiotensina/efectos de los fármacos , Sistema Renina-Angiotensina/genética , Factores de Tiempo , TranscriptomaRESUMEN
BACKGROUND: Histo-blood group antigen (HBGA) status may affect vaccine efficacy due to rotavirus strains binding to HBGAs in a P genotype-dependent manner. This study aimed to determine if HBGA status affected vaccine take of the G3P[6] neonatal vaccine RV3-BB. METHODS: DNA was extracted from stool samples collected in a subset (n = 164) of the RV3-BB phase IIb trial in Indonesian infants. FUT2 and FUT3 genes were amplified and sequenced, with any single-nucleotide polymorphisms analyzed to infer Lewis and secretor status. Measures of positive cumulative vaccine take were defined as serum immune response (immunoglobulin A or serum-neutralizing antibody) and/or stool excretion of RV3-BB virus. Participants were stratified by HBGA status and measures of vaccine take. RESULTS: In 147 of 164 participants, Lewis and secretor phenotype were determined. Positive vaccine take was recorded for 144 (97.9%) of 147 participants with the combined phenotype determined. Cumulative vaccine take was not significantly associated with secretor status (relative risk, 1.00 [95% CI, .94-1.06]; P = .97) or Lewis phenotype (relative risk, 1.03 [95% CI, .94-1.14]; P = .33), nor was a difference observed when analyzed by each component of vaccine take. CONCLUSIONS: The RV3-BB vaccine produced positive cumulative vaccine take, irrespective of HBGA status in Indonesian infants.
Asunto(s)
Antígenos de Grupos Sanguíneos , Infecciones por Rotavirus , Vacunas contra Rotavirus , Rotavirus , Lactante , Recién Nacido , Humanos , Vacunas contra Rotavirus/genética , Indonesia , GenotipoRESUMEN
BACKGROUND: VP4 [P] genotype binding specificities of rotaviruses and differential expression of histo-blood group antigens (HBGAs) between populations may contribute to reduced efficacy against severe rotavirus disease. P[6]-based rotavirus vaccines could broaden protection in such settings, particularly in Africa, where the Lewis-negative phenotype and P[6] rotavirus strains are common. METHODS: The association between HBGA status and G3P[6] rotavirus vaccine (RV3-BB) take was investigated in a phase 2A study of RV3-BB vaccine involving 46 individuals in Dunedin, New Zealand, during 2012-2014. FUT2 and FUT3 genotypes were determined from DNA extracted from stool specimens, and frequencies of positive cumulative vaccine take, defined as an RV3-BB serum immune response (either immunoglobulin A or serum neutralizing antibody) and/or stool excretion of the vaccine strain, stratified by HBGA status were determined. RESULTS: RV3-BB produced positive cumulative vaccine take in 29 of 32 individuals (91%) who expressed a functional FUT2 enzyme (the secretor group), 13 of 13 (100%) who were FUT2 null (the nonsecretor group), and 1 of 1 with reduced FUT2 activity (i.e., a weak secretor); in 37 of 40 individuals (93%) who expressed a functional FUT3 enzyme (the Lewis-positive group) and 3 of 3 who were FUT3 null (the Lewis-negative group); and in 25 of 28 Lewis-positive secretors (89%), 12 of 12 Lewis-positive nonsecretors (100%), 2 of 2 Lewis-negative secretors, and 1 of 1 Lewis-negative weak secretor. CONCLUSIONS: RV3-BB produced positive cumulative vaccine take irrespective of HBGA status. RV3-BB has the potential to provide an improved level of protection in settings where P[6] rotavirus disease is endemic, irrespective of the HBGA profile of the population.
Asunto(s)
Antígenos de Grupos Sanguíneos , Vacunas contra Rotavirus/administración & dosificación , Vacunas contra Rotavirus/inmunología , Anticuerpos Antivirales/sangre , Estudios de Cohortes , Heces/enzimología , Fucosiltransferasas/genética , Humanos , Recién Nacido , Galactósido 2-alfa-L-FucosiltransferasaRESUMEN
Between the 1930s and 1950s, scientists developed key principles of population genetics to try and explain the aging process. Almost a century later, these aging theories, including antagonistic pleiotropy and mutation accumulation, have been experimentally validated in animals. Although the theories have been much harder to test in humans despite research dating back to the 1970s, recent research is closing this evidence gap. Here we examine the strength of evidence for antagonistic pleiotropy in humans, one of the leading evolutionary explanations for the retention of genetic risk variation for non-communicable diseases. We discuss the analytical tools and types of data that are used to test for patterns of antagonistic pleiotropy and provide a primer of evolutionary theory on types of selection as a guide for understanding this mechanism and how it may manifest in other diseases. We find an abundance of non-experimental evidence for antagonistic pleiotropy in many diseases. In some cases, several studies have independently found corroborating evidence for this mechanism in the same or related sets of diseases including cancer and neurodegenerative diseases. Recent studies also suggest antagonistic pleiotropy may be involved in cardiovascular disease and diabetes. There are also compelling examples of disease risk variants that confer fitness benefits ranging from resistance to other diseases or survival in extreme environments. This provides increasingly strong support for the theory that antagonistic pleiotropic variants have enabled improved fitness but have been traded for higher burden of disease later in life. Future research in this field is required to better understand how this mechanism influences contemporary disease and possible consequences for their treatment.
Asunto(s)
Enfermedad/genética , Pleiotropía Genética/genética , Evolución Biológica , Evolución Molecular , Genética de Población/métodos , Humanos , Mutación , Selección Genética/genéticaRESUMEN
The development of regional lung injury in the preterm lung is not well understood. This study aimed to characterize time-dependent and regionally specific injury patterns associated with early ventilation of the preterm lung using a mass spectrometry-based proteomic approach. Preterm lambs delivered at 124-127 days gestation received 15 or 90 minutes of mechanical ventilation (positive end-expiratory pressure = 8 cm H2O, Vt = 6-8 ml/kg) and were compared with unventilated control lambs. At study completion, lung tissue was taken from standardized nondependent and dependent regions, and assessed for lung injury via histology, quantitative PCR, and proteomic analysis using Orbitrap-mass spectrometry. Ingenuity pathway analysis software was used to identify temporal and region-specific enrichments in pathways and functions. Apoptotic cell numbers were ninefold higher in nondependent lung at 15 and 90 minutes compared with controls, whereas proliferative cells were increased fourfold in the dependent lung at 90 minutes. The relative gene expression of lung injury markers was increased at 90 minutes in nondependent lung and unchanged in gravity-dependent lung. Within the proteome, the number of differentially expressed proteins was fourfold higher in the nondependent lung than the dependent lung. The number of differential proteins increased over time in both lung regions. A total of 95% of enriched canonical pathways and 94% of enriched cellular and molecular functions were identified only in nondependent lung tissue from the 90-minute ventilation group. In conclusion, complex injury pathways are initiated within the preterm lung after 15 minutes of ventilation and amplified by continuing ventilation. Injury development is region specific, with greater alterations within the proteome of nondependent lung.
Asunto(s)
Lesión Pulmonar/patología , Pulmón/patología , Proteoma/metabolismo , Lesión Pulmonar Inducida por Ventilación Mecánica/patología , Animales , Femenino , Pulmón/metabolismo , Lesión Pulmonar/metabolismo , Masculino , Respiración con Presión Positiva/métodos , Proteómica/métodos , Respiración Artificial/métodos , Ovinos , Lesión Pulmonar Inducida por Ventilación Mecánica/metabolismoRESUMEN
The preterm lung is particularly vulnerable to ventilator-induced lung injury (VILI) as a result of mechanical ventilation. However the developmental and pathological cellular mechanisms influencing the changing patterns of VILI have not been comprehensively delineated, preventing the advancement of targeted lung protective therapies. This study aimed to use SWATH-MS to comprehensively map the plasma proteome alterations associated with the initiation of VILI following 60 minutes of standardized mechanical ventilation from birth in three distinctly different developmental lung states; the extremely preterm, preterm and term lung using the ventilated lamb model. Across these gestations, 34 proteins were differentially altered in matched plasma samples taken at birth and 60 minutes. Multivariate analysis of the plasma proteomes confirmed a gestation-specific response to mechanical ventilation with 79% of differentially-expressed proteins altered in a single gestation group only. Six cellular and molecular functions and two physiological functions were uniquely enriched in either the extremely preterm or preterm group. Correlation analysis supported gestation-specific protein-function associations within each group. In identifying the gestation-specific proteome and functional responses to ventilation we provide the founding evidence required for the potential development of individualized respiratory support approaches tailored to both the developmental and pathological state of the lung.
Asunto(s)
Plasma/metabolismo , Nacimiento Prematuro/fisiopatología , Lesión Pulmonar Inducida por Ventilación Mecánica/metabolismo , Animales , Animales Recién Nacidos , Modelos Animales de Enfermedad , Edad Gestacional , Pulmón/patología , Espectrometría de Masas/métodos , Proteoma/metabolismo , Proteómica/métodos , Respiración Artificial , Oveja Doméstica , Lesión Pulmonar Inducida por Ventilación Mecánica/fisiopatología , Lesión Pulmonar Inducida por Ventilación Mecánica/prevención & controlRESUMEN
Phenotypic sex differences in coronary artery disease (CAD) and its risk factors have been apparent for many decades in basic and clinical research; however, whether these are also present at the gene level and thus influence genome-wide association and genetic risk prediction studies has often been ignored. From fundamental and medical standpoints, this is critically important to assess in order to fully understand the underlying genetic architecture that predisposes to CAD and better predict disease outcomes based on the interaction between genes, sex effects, and environment. In this chapter we aimed to (1) integrate the history and latest research from genome-wide association studies for CAD and clinical and genetic risk scores for prediction of CAD, (2) highlight sex-specific differences in these areas of research, and (3) discuss reasons why sex differences have often not been considered and, where present, why sex differences exist at genetic and phenotypic levels and how important they are for consideration in future research. While we find interesting examples of sex differences in effects of genetic variants on CAD, genome-wide association and genetic risk studies have typically not tested for sex-specific effects despite mounting evidence from diverse fields that these are likely very important to consider at both the genetic and phenotypic levels. In-depth testing for sex effects in large-scale genome-wide association studies that include autosomal and often excluded sex chromosomes alongside parallel improvements in resolution of sex-specific differences for risk factors and disease outcomes for CAD has the potential to substantially improve clinical and genetic risk prediction studies. Developing sex-tailored genetic risk scores as has been done recently for other disorders might be also warranted for CAD. In the era of precision medicine, this level of accuracy is essential for such a common and costly disease.
Asunto(s)
Enfermedad de la Arteria Coronaria/genética , Técnicas de Apoyo para la Decisión , Marcadores Genéticos , Estudio de Asociación del Genoma Completo , Disparidades en el Estado de Salud , Adulto , Factores de Edad , Anciano , Sesgo , Enfermedad de la Arteria Coronaria/diagnóstico , Enfermedad de la Arteria Coronaria/epidemiología , Femenino , Predisposición Genética a la Enfermedad , Humanos , Masculino , Persona de Mediana Edad , Fenotipo , Valor Predictivo de las Pruebas , Medición de Riesgo , Factores de Riesgo , Caracteres Sexuales , Factores SexualesRESUMEN
Importance: Surgical removal of adenoids and tonsils to treat obstructed breathing or recurrent middle-ear infections remain common pediatric procedures; however, little is known about their long-term health consequences despite the fact that these lymphatic organs play important roles in the development and function of the immune system. Objective: To estimate long-term disease risks associated with adenoidectomy, tonsillectomy, and adenotonsillectomy in childhood. Design, Setting, and Participants: A population-based cohort study of up to 1â¯189â¯061 children born in Denmark between 1979 and 1999 and evaluated in linked national registers up to 2009, covering at least the first 10 and up to 30 years of their life, was carried out. Participants in the case and control groups were selected such that their health did not differ significantly prior to surgery. Exposures: Participants were classified as exposed if adenoids or tonsils were removed within the first 9 years of life. Main Outcomes and Measures: The incidence of disease (defined by International Classification of Diseases, Eighth Revision [ICD-8] and Tenth Revision [ICD-10] diagnoses) up to age 30 years was examined using stratified Cox proportional hazard regressions that adjusted for 18 covariates, including parental disease history, pregnancy complications, birth weight, Apgar score, sex, socioeconomic markers, and region of Denmark born. Results: A total of up to 1â¯189â¯061 children were included in this study (48% female); 17â¯460 underwent adenoidectomy, 11â¯830 tonsillectomy, and 31â¯377 adenotonsillectomy; 1â¯157â¯684 were in the control group. Adenoidectomy and tonsillectomy were associated with a 2- to 3-fold increase in diseases of the upper respiratory tract (relative risk [RR], 1.99; 95% CI, 1.51-2.63 and RR, 2.72; 95% CI, 1.54-4.80; respectively). Smaller increases in risks for infectious and allergic diseases were also found: adenotonsillectomy was associated with a 17% increased risk of infectious diseases (RR, 1.17; 95% CI, 1.10-1.25) corresponding to an absolute risk increase of 2.14% because these diseases are relatively common (12%) in the population. In contrast, the long-term risks for conditions that these surgeries aim to treat often did not differ significantly and were sometimes lower or higher. Conclusions and Relevance: In this study of almost 1.2 million children, of whom 17â¯460 had adenoidectomy, 11â¯830 tonsillectomy, and 31â¯377 adenotonsillectomy, surgeries were associated with increased long-term risks of respiratory, infectious, and allergic diseases. Although rigorous controls for confounding were used where such data were available, it is possible these effects could not be fully accounted for. Our results suggest it is important to consider long-term risks when making decisions to perform tonsillectomy or adenoidectomy.
Asunto(s)
Adenoidectomía/efectos adversos , Enfermedades Transmisibles/epidemiología , Hipersensibilidad/epidemiología , Enfermedades Respiratorias/epidemiología , Tonsilectomía/efectos adversos , Adulto , Niño , Dinamarca/epidemiología , Femenino , Estudios de Seguimiento , Humanos , Incidencia , Masculino , Complicaciones Posoperatorias/epidemiología , Modelos de Riesgos Proporcionales , Factores de Riesgo , Factores de TiempoRESUMEN
BACKGROUND: Immunometabolism plays a central role in many cardiometabolic diseases. However, a robust map of immune-related gene networks in circulating human cells, their interactions with metabolites, and their genetic control is still lacking. Here, we integrate blood transcriptomic, metabolomic, and genomic profiles from two population-based cohorts (total N = 2168), including a subset of individuals with matched multi-omic data at 7-year follow-up. RESULTS: We identify topologically replicable gene networks enriched for diverse immune functions including cytotoxicity, viral response, B cell, platelet, neutrophil, and mast cell/basophil activity. These immune gene modules show complex patterns of association with 158 circulating metabolites, including lipoprotein subclasses, lipids, fatty acids, amino acids, small molecules, and CRP. Genome-wide scans for module expression quantitative trait loci (mQTLs) reveal five modules with mQTLs that have both cis and trans effects. The strongest mQTL is in ARHGEF3 (rs1354034) and affects a module enriched for platelet function, independent of platelet counts. Modules of mast cell/basophil and neutrophil function show temporally stable metabolite associations over 7-year follow-up, providing evidence that these modules and their constituent gene products may play central roles in metabolic inflammation. Furthermore, the strongest mQTL in ARHGEF3 also displays clear temporal stability, supporting widespread trans effects at this locus. CONCLUSIONS: This study provides a detailed map of natural variation at the blood immunometabolic interface and its genetic basis, and may facilitate subsequent studies to explain inter-individual variation in cardiometabolic disease.
Asunto(s)
Enfermedades Cardiovasculares/genética , Regulación de la Expresión Génica/inmunología , Redes Reguladoras de Genes/inmunología , Síndrome Metabólico/genética , Metaboloma/genética , Sitios de Carácter Cuantitativo/inmunología , Aminoácidos/inmunología , Aminoácidos/metabolismo , Linfocitos B/inmunología , Linfocitos B/patología , Basófilos/inmunología , Basófilos/patología , Plaquetas/inmunología , Plaquetas/patología , Proteína C-Reactiva/genética , Proteína C-Reactiva/inmunología , Enfermedades Cardiovasculares/inmunología , Enfermedades Cardiovasculares/metabolismo , Ácidos Grasos/inmunología , Ácidos Grasos/metabolismo , Estudios de Seguimiento , Ontología de Genes , Genoma Humano , Humanos , Inmunidad Innata , Lipoproteínas/genética , Lipoproteínas/inmunología , Síndrome Metabólico/inmunología , Síndrome Metabólico/metabolismo , Metaboloma/inmunología , Neutrófilos/inmunología , Neutrófilos/patología , Polimorfismo de Nucleótido Simple , Factores de Intercambio de Guanina Nucleótido Rho/genética , Factores de Intercambio de Guanina Nucleótido Rho/inmunologíaRESUMEN
BACKGROUND: Cardiac hypertrophy increases the risk of developing heart failure and cardiovascular death. The neutrophil inflammatory protein, lipocalin-2 (LCN2/NGAL), is elevated in certain forms of cardiac hypertrophy and acute heart failure. However, a specific role for LCN2 in predisposition and etiology of hypertrophy and the relevant genetic determinants are unclear. Here, we defined the role of LCN2 in concentric cardiac hypertrophy in terms of pathophysiology, inflammatory expression networks, and genomic determinants. METHODS AND RESULTS: We used 3 experimental models: a polygenic model of cardiac hypertrophy and heart failure, a model of intrauterine growth restriction and Lcn2-knockout mouse; cultured cardiomyocytes; and 2 human cohorts: 114 type 2 diabetes mellitus patients and 2064 healthy subjects of the YFS (Young Finns Study). In hypertrophic heart rats, cardiac and circulating Lcn2 was significantly overexpressed before, during, and after development of cardiac hypertrophy and heart failure. Lcn2 expression was increased in hypertrophic hearts in a model of intrauterine growth restriction, whereas Lcn2-knockout mice had smaller hearts. In cultured cardiomyocytes, Lcn2 activated molecular hypertrophic pathways and increased cell size, but reduced proliferation and cell numbers. Increased LCN2 was associated with cardiac hypertrophy and diastolic dysfunction in diabetes mellitus. In the YFS, LCN2 expression was associated with body mass index and cardiac mass and with levels of inflammatory markers. The single-nucleotide polymorphism, rs13297295, located near LCN2 defined a significant cis-eQTL for LCN2 expression. CONCLUSIONS: Direct effects of LCN2 on cardiomyocyte size and number and the consistent associations in experimental and human analyses reveal a central role for LCN2 in the ontogeny of cardiac hypertrophy and heart failure.
Asunto(s)
Cardiomegalia/genética , Regulación de la Expresión Génica , Insuficiencia Cardíaca/genética , Lipocalina 2/genética , Preñez , ARN/genética , Animales , Cardiomegalia/diagnóstico , Cardiomegalia/metabolismo , Células Cultivadas , Ecocardiografía , Femenino , Estudios de Seguimiento , Insuficiencia Cardíaca/diagnóstico , Insuficiencia Cardíaca/metabolismo , Humanos , Lipocalina 2/biosíntesis , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/ultraestructura , Embarazo , Estudios Prospectivos , Ratas , Ratas Endogámicas WKYRESUMEN
Traditional genome-wide scans for positive selection have mainly uncovered selective sweeps associated with monogenic traits. While selection on quantitative traits is much more common, very few signals have been detected because of their polygenic nature. We searched for positive selection signals underlying coronary artery disease (CAD) in worldwide populations, using novel approaches to quantify relationships between polygenic selection signals and CAD genetic risk. We identified new candidate adaptive loci that appear to have been directly modified by disease pressures given their significant associations with CAD genetic risk. These candidates were all uniquely and consistently associated with many different male and female reproductive traits suggesting selection may have also targeted these because of their direct effects on fitness. We found that CAD loci are significantly enriched for lifetime reproductive success relative to the rest of the human genome, with evidence that the relationship between CAD and lifetime reproductive success is antagonistic. This supports the presence of antagonistic-pleiotropic tradeoffs on CAD loci and provides a novel explanation for the maintenance and high prevalence of CAD in modern humans. Lastly, we found that positive selection more often targeted CAD gene regulatory variants using HapMap3 lymphoblastoid cell lines, which further highlights the unique biological significance of candidate adaptive loci underlying CAD. Our study provides a novel approach for detecting selection on polygenic traits and evidence that modern human genomes have evolved in response to CAD-induced selection pressures and other early-life traits sharing pleiotropic links with CAD.
Asunto(s)
Enfermedad de la Arteria Coronaria/genética , Sitios Genéticos , Pleiotropía Genética , Selección Genética , Aptitud Genética , Proyecto Mapa de Haplotipos , Humanos , Polimorfismo de Nucleótido SimpleRESUMEN
Liver disease is a major source of morbidity and mortality in children with short bowel syndrome (SBS). SBS-associated microbial dysbiosis has recently been implicated in the development of SBS-associated liver disease (SBS-ALD), however the pathological implications of this association have not been explored. In this study high-throughput sequencing of colonic content from the well-validated piglet SBS-ALD model was examined to determine alterations in microbial communities, and concurrent metabolic alterations identified in urine samples via targeted mass spectrometry approaches (GC-MS, LC-MS, FIA-MS) further uncovered impacts of microbial disturbance on metabolic outcomes in SBS-ALD. Multi-variate analyses were performed to elucidate contributing SBS-ALD microbe and metabolite panels and to identify microbe-metabolite interactions. A unique SBS-ALD microbe panel was clearest at the genus level, with discriminating bacteria predominantly from the Firmicutes and Bacteroidetes phyla. The SBS-ALD metabolome included important alterations in the microbial metabolism of amino acids and the mitochondrial metabolism of branched chain amino acids. Correlation analysis defined microbe-metabolite clustering patterns unique to SBS-ALD and identified a metabolite panel that correlates with dysbiosis of the gut microbiome in SBS.
Asunto(s)
Disbiosis/complicaciones , Microbioma Gastrointestinal , Hepatopatías/patología , Síndrome del Intestino Corto/complicaciones , Síndrome del Intestino Corto/microbiología , Animales , Animales Recién Nacidos , Colon/microbiología , Modelos Animales de Enfermedad , Espectrometría de Masas , Metaboloma , Porcinos , Urinálisis , Orina/químicaRESUMEN
AIMS: Genetics plays an important role in coronary heart disease (CHD) but the clinical utility of genomic risk scores (GRSs) relative to clinical risk scores, such as the Framingham Risk Score (FRS), is unclear. Our aim was to construct and externally validate a CHD GRS, in terms of lifetime CHD risk and relative to traditional clinical risk scores. METHODS AND RESULTS: We generated a GRS of 49 310 SNPs based on a CARDIoGRAMplusC4D Consortium meta-analysis of CHD, then independently tested it using five prospective population cohorts (three FINRISK cohorts, combined n = 12 676, 757 incident CHD events; two Framingham Heart Study cohorts (FHS), combined n = 3406, 587 incident CHD events). The GRS was associated with incident CHD (FINRISK HR = 1.74, 95% confidence interval (CI) 1.61-1.86 per S.D. of GRS; Framingham HR = 1.28, 95% CI 1.18-1.38), and was largely unchanged by adjustment for known risk factors, including family history. Integration of the GRS with the FRS or ACC/AHA13 scores improved the 10 years risk prediction (meta-analysis C-index: +1.5-1.6%, P < 0.001), particularly for individuals ≥60 years old (meta-analysis C-index: +4.6-5.1%, P < 0.001). Importantly, the GRS captured substantially different trajectories of absolute risk, with men in the top 20% of attaining 10% cumulative CHD risk 12-18 y earlier than those in the bottom 20%. High genomic risk was partially compensated for by low systolic blood pressure, low cholesterol level, and non-smoking. CONCLUSIONS: A GRS based on a large number of SNPs improves CHD risk prediction and encodes different trajectories of lifetime risk not captured by traditional clinical risk scores.
Asunto(s)
Enfermedad Coronaria , Femenino , Genómica , Cardiopatías , Humanos , Masculino , Polimorfismo de Nucleótido Simple , Medición de Riesgo , Factores de RiesgoRESUMEN
BACKGROUND AND OBJECTIVES: Effects of maternal and paternal age on offspring autism and schizophrenia risks have been studied for over three decades, but inconsistent risks have often been found, precluding well-informed speculation on why these age-related risks might exist. METHODOLOGY: To help clarify this situation we analysed a massive single population sample from Denmark including the full spectrum of autistic and schizophrenic disorders (eliminating between-study confounding), used up to 30 follow-up years, controlled for over 20 potentially confounding factors and interpret the ultimate causation of the observed risk patterns using generally accepted principles of parent-offspring conflict and life-history theory. RESULTS: We evaluated the effects of paternal age, maternal age and parental age difference on offspring mental disorders and found consistently similar risk patterns for related disorders and markedly different patterns between autistic and schizophrenic disorders. Older fathers and mothers both conferred increased risk for autistic but not schizophrenic disorders, but autism risk was reduced in younger parents and offspring of younger mothers had increased risk for many schizophrenic disorders. Risk for most disorders also increased when parents were more dissimilarly aged. Monotonically increasing autism risk is consistent with mutation accumulation as fathers' age, but this explanation is invalid for schizophrenic disorders, which were not related to paternal age and were negatively correlated with maternal age. CONCLUSIONS AND IMPLICATIONS: We propose that the observed maternally induced risk patterns ultimately reflect a shifting ancestral life-history trade-off between current and future reproduction, mediated by an initially high but subsequently decreasing tendency to constrain foetal provisioning as women proceed from first to final pregnancy.
RESUMEN
Opposite phenotypic and behavioural traits associated with copy number variation and disruptions to imprinted genes with parent-of-origin effects have led to the hypothesis that autism and schizophrenia share molecular risk factors and pathogenic mechanisms, but a direct phenotypic comparison of how their risks covary has not been attempted. Here, we use health registry data collected on Denmark's roughly 5 million residents between 1978 and 2009 to detect opposing risks of autism and schizophrenia depending on normal variation (mean ± 1 s.d.) in adjusted birth size, which we use as a proxy for diametric gene-dosage variation in utero. Above-average-sized babies (weight, 3691-4090 g; length, 52.8-54.3 cm) had significantly higher risk for autism spectrum (AS) and significantly lower risk for schizophrenia spectrum (SS) disorders. By contrast, below-average-sized babies (2891-3290 g; 49.7-51.2 cm) had significantly lower risk for AS and significantly higher risk for SS disorders. This is the first study directly comparing autism and schizophrenia risks in the same population, and provides the first large-scale empirical support for the hypothesis that diametric gene-dosage effects contribute to these disorders. Only the kinship theory of genomic imprinting predicts the opposing risk patterns that we discovered, suggesting that molecular research on mental disease risk would benefit from considering evolutionary theory.
Asunto(s)
Trastorno Autístico/epidemiología , Trastorno Autístico/genética , Peso al Nacer/genética , Estatura/genética , Trastornos Generalizados del Desarrollo Infantil/genética , Esquizofrenia/epidemiología , Esquizofrenia/genética , Variaciones en el Número de Copia de ADN , Dinamarca , Femenino , Dosificación de Gen , Impresión Genómica , Humanos , Recién Nacido , Masculino , Factores de RiesgoRESUMEN
Preeclampsia is a major cause of perinatal mortality and disease affecting 5-10% of all pregnancies worldwide, but its etiology remains poorly understood despite considerable research effort. Parent-offspring conflict theory suggests that such hypertensive disorders of pregnancy may have evolved through the ability of fetal genes to increase maternal blood pressure as this enhances general nutrient supply. However, such mechanisms for inducing hypertension in pregnancy would need to incur sufficient offspring health benefits to compensate for the obvious risks for maternal and fetal health towards the end of pregnancy in order to explain why these disorders have not been removed by natural selection in our hunter-gatherer ancestors. We analyzed >750,000 live births in the Danish National Patient Registry and all registered medical diagnoses for up to 30 years after birth. We show that offspring exposed to pregnancy-induced hypertension (PIH) in trimester 1 had significantly reduced overall later-life disease risks, but increased risks when PIH exposure started or developed as preeclampsia in later trimesters. Similar patterns were found for first-year mortality. These results suggest that early PIH leading to improved postpartum survival and health represents a balanced compromise between the reproductive interests of parents and offspring, whereas later onset of PIH may reflect an unbalanced parent-offspring conflict at the detriment of maternal and offspring health.