Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Mol Metab ; 53: 101309, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34303878

RESUMEN

OBJECTIVE: The mechanistic target of rapamycin complex 1 (mTORC1) is dynamically regulated by fasting and feeding cycles in the liver to promote protein and lipid synthesis while suppressing autophagy. However, beyond these functions, the metabolic response of the liver to feeding and insulin signaling orchestrated by mTORC1 remains poorly defined. Here, we determine whether ATF4, a stress responsive transcription factor recently found to be independently regulated by mTORC1 signaling in proliferating cells, is responsive to hepatic mTORC1 signaling to alter hepatocyte metabolism. METHODS: ATF4 protein levels and expression of canonical gene targets were analyzed in the liver following fasting and physiological feeding in the presence or absence of the mTORC1 inhibitor, rapamycin. Primary hepatocytes from wild-type or liver-specific Atf4 knockout (LAtf4KO) mice were used to characterize the effects of insulin-stimulated mTORC1-ATF4 function on hepatocyte gene expression and metabolism. Both unbiased steady-state metabolomics and stable-isotope tracing methods were employed to define mTORC1 and ATF4-dependent metabolic changes. RNA-sequencing was used to determine global changes in feeding-induced transcripts in the livers of wild-type versus LAtf4KO mice. RESULTS: We demonstrate that ATF4 and its metabolic gene targets are stimulated by mTORC1 signaling in the liver, in a hepatocyte-intrinsic manner by insulin in response to feeding. While we demonstrate that de novo purine and pyrimidine synthesis is stimulated by insulin through mTORC1 signaling in primary hepatocytes, this regulation was independent of ATF4. Metabolomics and metabolite tracing studies revealed that insulin-mTORC1-ATF4 signaling stimulates pathways of nonessential amino acid synthesis in primary hepatocytes, including those of alanine, aspartate, methionine, and cysteine, but not serine. CONCLUSIONS: The results demonstrate that ATF4 is a novel metabolic effector of mTORC1 in the liver, extending the molecular consequences of feeding and insulin-induced mTORC1 signaling in this key metabolic tissue to the control of amino acid metabolism.


Asunto(s)
Factor de Transcripción Activador 4/metabolismo , Hígado/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Factor de Transcripción Activador 4/deficiencia , Alimentación Animal , Animales , Conducta Alimentaria , Insulina/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Transducción de Señal
2.
Science ; 363(6431): 1088-1092, 2019 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-30846598

RESUMEN

Nicotinamide adenine dinucleotide phosphate (NADP+) is essential for producing NADPH, the primary cofactor for reductive metabolism. We find that growth factor signaling through the phosphoinositide 3-kinase (PI3K)-Akt pathway induces acute synthesis of NADP+ and NADPH. Akt phosphorylates NAD kinase (NADK), the sole cytosolic enzyme that catalyzes the synthesis of NADP+ from NAD+ (the oxidized form of NADH), on three serine residues (Ser44, Ser46, and Ser48) within an amino-terminal domain. This phosphorylation stimulates NADK activity both in cells and directly in vitro, thereby increasing NADP+ production. A rare isoform of NADK (isoform 3) lacking this regulatory region exhibits constitutively increased activity. These data indicate that Akt-mediated phosphorylation of NADK stimulates its activity to increase NADP+ production through relief of an autoinhibitory function inherent to its amino terminus.


Asunto(s)
NADP/biosíntesis , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina/metabolismo , Animales , Cromatografía Liquida , Citosol/enzimología , Células HEK293 , Humanos , Factor I del Crecimiento Similar a la Insulina/farmacología , Ratones , Fosforilación , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Dominios Proteicos , Serina/genética , Transducción de Señal/efectos de los fármacos , Espectrometría de Masas en Tándem
3.
Sci Rep ; 7(1): 16112, 2017 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-29170467

RESUMEN

The mechanistic target of rapamycin complex 1 (mTORC1) is a central regulator of cell growth that is often aberrantly activated in cancer. However, mTORC1 inhibitors, such as rapamycin, have limited effectiveness as single agent cancer therapies, with feedback mechanisms inherent to the signaling network thought to diminish the anti-tumor effects of mTORC1 inhibition. Here, we identify the protein kinase and proto-oncogene PIM3 as being repressed downstream of mTORC1 signaling. PIM3 expression is suppressed in cells with loss of the tuberous sclerosis complex (TSC) tumor suppressors, which exhibit growth factor-independent activation of mTORC1, and in the mouse liver upon feeding-induced activation of mTORC1. Inhibition of mTORC1 with rapamycin induces PIM3 transcript and protein levels in a variety of settings. Suppression of PIM3 involves the sterol regulatory element-binding (SREBP) transcription factors SREBP1 and 2, whose activation and mRNA expression are stimulated by mTORC1 signaling. We find that PIM3 repression is mediated by miR-33, an intronic microRNA encoded within the SREBP loci, the expression of which is decreased with rapamycin. These results demonstrate that PIM3 is induced upon mTORC1 inhibition, with potential implications for the effects of mTORC1 inhibitors in TSC, cancers, and the many other disease settings influenced by aberrant mTORC1 signaling.


Asunto(s)
Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas de Unión a los Elementos Reguladores de Esteroles/metabolismo , Animales , Línea Celular Tumoral , Humanos , Immunoblotting , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Ratones , Ratones Endogámicos C57BL , MicroARNs/genética , MicroARNs/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas/genética , Proteínas de Unión a los Elementos Reguladores de Esteroles/genética , Proteína 2 del Complejo de la Esclerosis Tuberosa/genética , Proteína 2 del Complejo de la Esclerosis Tuberosa/metabolismo
4.
Elife ; 52016 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-26894960

RESUMEN

Macrophage activation/polarization to distinct functional states is critically supported by metabolic shifts. How polarizing signals coordinate metabolic and functional reprogramming, and the potential implications for control of macrophage activation, remains poorly understood. Here we show that IL-4 signaling co-opts the Akt-mTORC1 pathway to regulate Acly, a key enzyme in Ac-CoA synthesis, leading to increased histone acetylation and M2 gene induction. Only a subset of M2 genes is controlled in this way, including those regulating cellular proliferation and chemokine production. Moreover, metabolic signals impinge on the Akt-mTORC1 axis for such control of M2 activation. We propose that Akt-mTORC1 signaling calibrates metabolic state to energetically demanding aspects of M2 activation, which may define a new role for metabolism in supporting macrophage activation.


Asunto(s)
ATP Citrato (pro-S)-Liasa/metabolismo , Activación de Macrófagos , Macrófagos/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Acetilación , Animales , Proliferación Celular , Quimiocinas/metabolismo , Regulación de la Expresión Génica , Histonas/metabolismo , Interleucina-4/metabolismo , Macrófagos/fisiología , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones Endogámicos C57BL , Procesamiento Proteico-Postraduccional
5.
Nat Commun ; 4: 2834, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24280772

RESUMEN

Macrophages are able to polarize to proinflammatory M1 or alternative M2 states with distinct phenotypes and physiological functions. How metabolic status regulates macrophage polarization remains not well understood, and here we examine the role of mTOR (mechanistic target of rapamycin), a central metabolic pathway that couples nutrient sensing to regulation of metabolic processes. Using a mouse model in which myeloid lineage-specific deletion of Tsc1 (Tsc1(Δ/Δ)) leads to constitutive mTOR complex 1 (mTORC1) activation, we find that Tsc1(Δ/Δ) macrophages are refractory to IL-4-induced M2 polarization, but produce increased inflammatory responses to proinflammatory stimuli. Moreover, mTORC1-mediated downregulation of Akt signalling critically contributes to defective polarization. These findings highlight a key role for the mTOR pathway in regulating macrophage polarization, and suggest how nutrient sensing and metabolic status could be 'hard-wired' to control of macrophage function, with broad implications for regulation of type 2 immunity, inflammation and allergy.


Asunto(s)
Polaridad Celular/fisiología , Macrófagos/fisiología , Serina-Treonina Quinasas TOR/fisiología , Proteínas Supresoras de Tumor/fisiología , Animales , Quitina , Mediadores de Inflamación/fisiología , Interleucina-4/metabolismo , Lipopolisacáridos/toxicidad , Masculino , Ratones , PPAR gamma/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factor de Transcripción STAT6/metabolismo , Proteína 1 del Complejo de la Esclerosis Tuberosa
6.
Cell Res ; 23(8): 984-5, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23835480

RESUMEN

While M1 macrophages are highly pro-inflammatory and microbicidal, M2 macrophages and the related tumor associated macrophages (TAMs) regulate tissue remodeling and angiogenesis and can display immunomodulatory activity. In July issue of Cell Research, Zhang et al. show that ROS production, critical for the activation and functions of M1 macrophages, is necessary for the differentiation of M2 macrophages and TAMs, and that antioxidant therapy blocks TAM differentiation and tumorigenesis in mouse models of cancer.


Asunto(s)
Macrófagos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales , Femenino , Humanos
7.
Prostate ; 73(5): 522-30, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23038275

RESUMEN

BACKGROUND: Matrix metalloproteinase-2 (MMP2) has been shown to play an important role in cancer cell invasion and the expression of MMP2 is associated with the poor prognosis of prostate cancer; however, the mechanism of MMP2 expression is largely unknown. SIRT1 is a nicotinamide adenine dinucleotide-dependent histone deacetylase (class III HDAC) that has recently been shown to have implications in regulating cancer cell growth and apoptosis. The purpose of this study is to determine the role of SIRT1 in regulating MMP2 expression and tumor invasion in prostate cancer cells. METHODS: The interfering RNAi was used to knockdown SIRT1 from prostate cancer cells. Immunoblots, RT-PCR, zymographic assays, co-immunoprecipitation, analysis and transwell assays were used to examine the effects of SIRT1 silencing on MMP2 expression and activity, on SIRT1 and MMP2 interaction, and on prostate cancer cell invasion. The immuno-histochemical assay was performed to study SIRT1 expression in prostate cancer tissues. RESULTS: We show that SIRT1 associates and deacetylates MMP2 and SIRT1 regulates MMP2 expression by controlling MMP2 protein stability through the proteosomal pathway. Thus, we demonstrated a novel mechanism in that MMP2 expression can be regulated at the posttranslational level by SIRT1. Furthermore, we determined that SIRT1 inhibition reduced prostate cancer cell invasion and SIRT1 is highly expressed in advanced prostate cancer tissues. CONCLUSIONS: SIRT1 is an important regulator of MMP2 expression, activity, and prostate cancer cell invasion. Overexpressed SIRT1 in advanced prostate cancer may play an important role in prostate cancer progression.


Asunto(s)
Metaloproteinasa 2 de la Matriz/genética , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Sirtuina 1/metabolismo , Animales , Línea Celular Tumoral , Regulación Enzimológica de la Expresión Génica/fisiología , Regulación Neoplásica de la Expresión Génica/fisiología , Masculino , Metaloproteinasa 2 de la Matriz/metabolismo , Invasividad Neoplásica/patología , Invasividad Neoplásica/fisiopatología , Neoplasias de la Próstata/patología , Complejo de la Endopetidasa Proteasomal/metabolismo , Estabilidad Proteica , ARN Mensajero/metabolismo , ARN Interferente Pequeño/genética , Ratas , Sirtuina 1/genética , Ubiquitina/metabolismo
8.
Proc Natl Acad Sci U S A ; 109(28): 11282-7, 2012 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-22733741

RESUMEN

The NLRP3 (nucleotide-binding domain, leucine-rich-repeat-containing family, pyrin domain-containing 3) inflammasome mediates production of inflammatory mediators, such as IL-1ß and IL-18, and as such is implicated in a variety of inflammatory processes, including infection, sepsis, autoinflammatory diseases, and metabolic diseases. The proximal steps in NLRP3 inflammasome activation are not well understood. Here we elucidate a critical role for Ca(2+) mobilization in activation of the NLRP3 inflammasome by multiple stimuli. We demonstrate that blocking Ca(2+) mobilization inhibits assembly and activation of the NLRP3 inflammasome complex, and that during ATP stimulation Ca(2+) signaling is pivotal in promoting mitochondrial damage. C/EPB homologous protein, a transcription factor that can modulate Ca(2+) release from the endoplasmic reticulum, amplifies NLRP3 inflammasome activation, thus linking endoplasmic reticulum stress to activation of the NLRP3 inflammasome. Our findings support a model for NLRP3 inflammasome activation by Ca(2+)-mediated mitochondrial damage.


Asunto(s)
Calcio/metabolismo , Proteínas Portadoras/metabolismo , Inflamasomas/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Retículo Endoplásmico/metabolismo , Citometría de Flujo/métodos , Inmunidad Innata , Inflamación/metabolismo , Ratones , Ratones Transgénicos , Mitocondrias/metabolismo , Modelos Biológicos , Proteína con Dominio Pirina 3 de la Familia NLR , Transducción de Señal
9.
Int J Biol Sci ; 6(6): 599-612, 2010 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-20941378

RESUMEN

SIRT1, an NAD-dependent histone/protein deacetylase, has classically been thought of as a nuclear protein. In this study, we demonstrate that SIRT1 is mainly localized in the nucleus of normal cells, but is predominantly localized in the cytoplasm of the cancer / transformed cells we tested. We found this predominant cytoplasmic localization of SIRT1 is regulated by elevated mitotic activity and PI3K/IGF-1R signaling in cancer cells. We show that aberrant cytoplasmic localization of SIRT1 is due to increased protein stability and is regulated by PI3K/IGF-1R signaling. In addition, we determined that SIRT1 is required for PI3K-mediated cancer cell growth. Our study represents the first identification that aberrant cytoplasm localization is one of the specific alternations to SIRT1 that occur in cancer cells, and PI3K/IGF-1R signaling plays an important role in the regulation of cytoplasmic SIRT1 stability. Our findings suggest that the over-expressed cytoplasmic SIRT1 in cancer cells may greatly contribute to its cancer-specific function by working downstream of the PI3K/IGF-1R signaling pathway.


Asunto(s)
Citoplasma/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Receptor IGF Tipo 1/metabolismo , Transducción de Señal/fisiología , Sirtuina 1/metabolismo , Línea Celular Tumoral , Supervivencia Celular/genética , Técnica del Anticuerpo Fluorescente , Humanos , Immunoblotting , Estabilidad Proteica , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/genética , Sirtuina 1/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA