Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Methods Mol Biol ; 2675: 149-165, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37258762

RESUMEN

Hydrogen peroxide (H2O2) is an important signaling molecule involved in regulating antioxidative transcriptional responses, cellular differentiation, and hypoxia response. H2O2 generation and signaling are highly localized processes. Understanding the dynamics of this molecule inside intact cells with subcompartmental resolution is instrumental to unravel its role in cellular signaling. Different genetically encoded fluorescent sensors have been developed over the last few years that enable such non-disruptive monitoring with high spatiotemporal resolution. In this chapter, we describe the use of these genetically encoded sensors to directly monitor H2O2 dynamics in yeast and cultured mammalian cells.


Asunto(s)
Peróxido de Hidrógeno , Saccharomyces cerevisiae , Animales , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Peróxido de Hidrógeno/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Oxidación-Reducción , Citosol/metabolismo , Mamíferos/metabolismo
2.
STAR Protoc ; 4(1): 102059, 2023 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-36853680

RESUMEN

Some newly translated proteins are more susceptible to misfolding and aggregation upon heat shock in comparison to other proteins. To study these newly translated thermo-sensitive proteins on a proteomic scale, we present here a protocol that combines pulse-SILAC with biochemical fractionation for mass spectrometry analysis, followed by an orthogonal validation protocol for selected candidates using the GAL promoter system in Saccharomyces cerevisiae. This approach can be further developed to study other stresses and specific post-translational modifications or adapted to mammalian cells. For complete details on the use and execution of this protocol, please refer to Zhu et al. (2022).1.


Asunto(s)
Fraccionamiento Químico , Proteómica , Animales , Espectrometría de Masas , Regiones Promotoras Genéticas/genética , Procesamiento Proteico-Postraduccional , Saccharomyces cerevisiae/genética , Mamíferos
3.
Cell Rep ; 40(3): 111096, 2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35858568

RESUMEN

Accurate and efficient folding of nascent protein sequences into their native states requires support from the protein homeostasis network. Herein we probe which newly translated proteins are thermo-sensitive, making them susceptible to misfolding and aggregation under heat stress using pulse-SILAC mass spectrometry. We find a distinct group of proteins that is highly sensitive to this perturbation when newly synthesized but not once matured. These proteins are abundant and highly structured. Notably, they display a tendency to form ß sheet secondary structures, have more complex folding topology, and are enriched for chaperone-binding motifs, suggesting a higher demand for chaperone-assisted folding. These polypeptides are also more often components of stable protein complexes in comparison with other proteins. Combining these findings suggests the existence of a specific subset of proteins in the cell that is particularly vulnerable to misfolding and aggregation following synthesis before reaching the native state.


Asunto(s)
Pliegue de Proteína , Proteoma , Chaperonas Moleculares/metabolismo , Péptidos/metabolismo , Unión Proteica , Proteoma/metabolismo
4.
J Biol Chem ; 298(7): 102062, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35623389

RESUMEN

The accumulation of protein inclusions is linked to many neurodegenerative diseases that typically develop in older individuals, due to a combination of genetic and environmental factors. In rare familial neurodegenerative disorders, genes encoding for aggregation-prone proteins are often mutated. While the underlying mechanism leading to these diseases still remains to be fully elucidated, efforts in the past 20 years revealed a vast network of protein-protein interactions that play a major role in regulating the aggregation of key proteins associated with neurodegeneration. Misfolded proteins that can oligomerize and form insoluble aggregates associate with molecular chaperones and other elements of the proteolytic machineries that are the frontline workers attempting to protect the cells by promoting clearance and preventing aggregation. Proteins that are normally bound to aggregation-prone proteins can become sequestered and mislocalized in protein inclusions, leading to their loss of function. In contrast, mutations, posttranslational modifications, or misfolding of aggregation-prone proteins can lead to gain of function by inducing novel or altered protein interactions, which in turn can impact numerous essential cellular processes and organelles, such as vesicle trafficking and the mitochondria. This review examines our current knowledge of protein-protein interactions involving several key aggregation-prone proteins that are associated with Alzheimer's disease, Parkinson's disease, Huntington's disease, or amyotrophic lateral sclerosis. We aim to provide an overview of the protein interaction networks that play a central role in driving or mitigating inclusion formation, while highlighting some of the key proteomic studies that helped to uncover the extent of these networks.


Asunto(s)
Enfermedades Neurodegenerativas , Anciano , Humanos , Chaperonas Moleculares/metabolismo , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , Pliegue de Proteína , Mapas de Interacción de Proteínas , Proteómica
5.
EMBO J ; 41(7): e109169, 2022 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-35146782

RESUMEN

Hydrogen peroxide (H2 O2 ) has key signaling roles at physiological levels, while causing molecular damage at elevated concentrations. H2 O2 production by mitochondria is implicated in regulating processes inside and outside these organelles. However, it remains unclear whether and how mitochondria in intact cells release H2 O2 . Here, we employed a genetically encoded high-affinity H2 O2 sensor, HyPer7, in mammalian tissue culture cells to investigate different modes of mitochondrial H2 O2 release. We found substantial heterogeneity of HyPer7 dynamics between individual cells. We further observed mitochondria-released H2 O2 directly at the surface of the organelle and in the bulk cytosol, but not in the nucleus or at the plasma membrane, pointing to steep gradients emanating from mitochondria. Gradient formation is controlled by cytosolic peroxiredoxins, which act redundantly and with a substantial reserve capacity. Dynamic adaptation of cytosolic thioredoxin reductase levels during metabolic changes results in improved H2 O2 handling and explains previously observed differences between cell types. Our data suggest that H2 O2 -mediated signaling is initiated only in close proximity to mitochondria and under specific metabolic conditions.


Asunto(s)
Peróxido de Hidrógeno , Mitocondrias , Animales , Citosol/metabolismo , Humanos , Peróxido de Hidrógeno/metabolismo , Mamíferos , Mitocondrias/metabolismo , Transducción de Señal
6.
Life Sci Alliance ; 2(6)2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31740565

RESUMEN

Mitofusins are dynamin-related GTPases that drive mitochondrial fusion by sequential events of oligomerization and GTP hydrolysis, followed by their ubiquitylation. Here, we show that fusion requires a trilateral salt bridge at a hinge point of the yeast mitofusin Fzo1, alternatingly forming before and after GTP hydrolysis. Mutations causative of Charcot-Marie-Tooth disease massively map to this hinge point site, underlining the disease relevance of the trilateral salt bridge. A triple charge swap rescues the activity of Fzo1, emphasizing the close coordination of the hinge residues with GTP hydrolysis. Subsequently, ubiquitylation of Fzo1 allows the AAA-ATPase ubiquitin-chaperone Cdc48 to resolve Fzo1 clusters, releasing the dynamin for the next fusion round. Furthermore, cross-complementation within the oligomer unexpectedly revealed ubiquitylated but fusion-incompetent Fzo1 intermediates. However, Cdc48 did not affect the ubiquitylated but fusion-incompetent variants, indicating that Fzo1 ubiquitylation is only controlled after membrane merging. Together, we present an integrated model on how mitochondrial outer membranes fuse, a critical process for their respiratory function but also putatively relevant for therapeutic interventions.


Asunto(s)
GTP Fosfohidrolasas/química , GTP Fosfohidrolasas/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Dinámicas Mitocondriales/fisiología , Proteínas Mitocondriales/química , Proteínas Mitocondriales/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteína que Contiene Valosina/química , Proteína que Contiene Valosina/metabolismo , Animales , Fibroblastos , Fusión de Membrana/fisiología , Ratones , Mitocondrias/metabolismo , Membranas Mitocondriales/química , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Saccharomyces cerevisiae , Ubiquitina/química , Ubiquitina/metabolismo , Ubiquitinación
7.
EMBO J ; 38(18): e101552, 2019 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-31389622

RESUMEN

Hydrogen peroxide (H2 O2 ) plays important roles in cellular signaling, yet nonetheless is toxic at higher concentrations. Surprisingly, the mechanism(s) of cellular H2 O2 toxicity remain poorly understood. Here, we reveal an important role for mitochondrial 1-Cys peroxiredoxin from budding yeast, Prx1, in regulating H2 O2 -induced cell death. We show that Prx1 efficiently transfers oxidative equivalents from H2 O2 to the mitochondrial glutathione pool. Deletion of PRX1 abrogates glutathione oxidation and leads to a cytosolic adaptive response involving upregulation of the catalase, Ctt1. Both of these effects contribute to improved cell viability following an acute H2 O2 challenge. By replacing PRX1 with natural and engineered peroxiredoxin variants, we could predictably induce widely differing matrix glutathione responses to H2 O2 . Therefore, we demonstrated a key role for matrix glutathione oxidation in driving H2 O2 -induced cell death. Finally, we reveal that hyperoxidation of Prx1 serves as a switch-off mechanism to limit oxidation of matrix glutathione at high H2 O2 concentrations. This enables yeast cells to strike a fine balance between H2 O2 removal and limitation of matrix glutathione oxidation.


Asunto(s)
Peróxido de Hidrógeno/efectos adversos , Peroxidasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Eliminación de Gen , Glutatión/metabolismo , Viabilidad Microbiana , Mitocondrias/metabolismo , Estrés Oxidativo , Peroxidasas/genética , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
8.
Antioxid Redox Signal ; 27(15): 1162-1177, 2017 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-28558477

RESUMEN

SIGNIFICANCE: Mitochondrial glutathione fulfills crucial roles in a number of processes, including iron-sulfur cluster biosynthesis and peroxide detoxification. Recent Advances: Genetically encoded fluorescent probes for the glutathione redox potential (EGSH) have permitted extensive new insights into the regulation of mitochondrial glutathione redox homeostasis. These probes have revealed that the glutathione pools of the mitochondrial matrix and intermembrane space (IMS) are highly reduced, similar to the cytosolic glutathione pool. The glutathione pool of the IMS is in equilibrium with the cytosolic glutathione pool due to the presence of porins that allow free passage of reduced glutathione (GSH) and oxidized glutathione (GSSG) across the outer mitochondrial membrane. In contrast, limited transport of glutathione across the inner mitochondrial membrane ensures that the matrix glutathione pool is kinetically isolated from the cytosol and IMS. CRITICAL ISSUES: In contrast to the situation in the cytosol, there appears to be extensive crosstalk between the mitochondrial glutathione and thioredoxin systems. Further, both systems appear to be intimately involved in the removal of reactive oxygen species, particularly hydrogen peroxide (H2O2), produced in mitochondria. However, a detailed understanding of these interactions remains elusive. FUTURE DIRECTIONS: We postulate that the application of genetically encoded sensors for glutathione in combination with novel H2O2 probes and conventional biochemical redox state assays will lead to fundamental new insights into mitochondrial redox regulation and reinvigorate research into the physiological relevance of mitochondrial redox changes. Antioxid. Redox Signal. 27, 1162-1177.


Asunto(s)
Citosol/metabolismo , Glutatión/metabolismo , Mitocondrias/metabolismo , Animales , Técnicas Biosensibles , Colorantes Fluorescentes/metabolismo , Disulfuro de Glutatión/metabolismo , Homeostasis , Humanos , Oxidación-Reducción , Levaduras/metabolismo
9.
Mol Biol Cell ; 26(2): 195-204, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25392302

RESUMEN

The mitochondrial intermembrane space (IMS) harbors an oxidizing machinery that drives import and folding of small cysteine-containing proteins without targeting signals. The main component of this pathway is the oxidoreductase Mia40, which introduces disulfides into its substrates. We recently showed that the IMS glutathione pool is maintained as reducing as that of the cytosol. It thus remained unclear how equilibration of protein disulfides with the IMS glutathione pool is prevented in order to allow oxidation-driven protein import. Here we demonstrate the presence of glutaredoxins in the IMS and show that limiting amounts of these glutaredoxins provide a kinetic barrier to prevent the thermodynamically feasible reduction of Mia40 substrates by the IMS glutathione pool. Moreover, they allow Mia40 to exist in a predominantly oxidized state. Consequently, overexpression of glutaredoxin 2 in the IMS results in a more reduced Mia40 redox state and a delay in oxidative folding and mitochondrial import of different Mia40 substrates. Our findings thus indicate that carefully balanced glutaredoxin amounts in the IMS ensure efficient oxidative folding in the reducing environment of this compartment.


Asunto(s)
Glutarredoxinas/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Compuestos de Sulfhidrilo/metabolismo , Citosol/metabolismo , Glutarredoxinas/genética , Glutatión/metabolismo , Disulfuro de Glutatión/metabolismo , Immunoblotting , Cinética , Metaloproteasas/genética , Metaloproteasas/metabolismo , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Proteínas Mitocondriales , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Mutación , Oxidación-Reducción , Transporte de Proteínas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA