RESUMEN
In semi-arid regions, water policy has strongly promoted the construction of water reservoirs with little or no consideration for their ecological consequences. In order to quantify the effect induced by flow discontinuity on environmental conditions, water quality, and invertebrate communities at high-gradient streams, we investigated unregulated and regulated reaches at 13 watercourses, located in the Dry Chaco Ecoregion (South America). Dams differed in the dominant land uses (rangeland, agriculture, and urban) of the related catchment area. We assessed on-site hydro-geomorphic features, water quality and bacteriological parameters, habitat condition, chlorophyll a, macrophytes cover, and macroinvertebrate communities. Significant increases in mineral parameters and organic contamination indicators were detected at regulated reaches, such as: conductivity, total solids, turbidity, color, and phosphates. Dams negatively affected habitat condition, and macrophyte cover increased at regulated sites. Macroinvertebrates showed a diminution in most of the metrics analyzed, with a decrease of sensitive groups and an increase in the more tolerant ones. Redundancy Analysis revealed that SWQI (physicochemical based index) and the proportion of coarse gravel were stronger predictors on metrics arrangement. Variance partitioning analyses proved that regulation effects prevailed over land use in explaining metrics variation. Invertebrate community was positively related to better ecological conditions, which suggests that restitution of ecological integrity at regulated reaches should include habitat restoration. These results are relevant for the management of regulated water resources in arid and semi-arid regions in a context of climate change.
Asunto(s)
Ríos , Calidad del Agua , Animales , Clorofila A , Invertebrados , Ecosistema , Monitoreo del Ambiente/métodosRESUMEN
In recent years, concerns have increased about the adverse effects on health and the environment of polybrominated diphenyl ethers (PBDEs), especially BDE-209, the most widely PBDE used globally. These pollutants derive from e-waste and present different adverse effects on biota. In this work, a toxicological study on mosquitofish (Gambusia affinis) using BDE-209 (2,2',3,3',4,4',5,'5',6,6'-decabromodiphenyl ether) was carried out. Acute toxicity bioassays were conducted with daily renewal of solutions, using different concentrations of environmental relevance, ranged between 10 and 100 µg L-1 of BDE-209. At 48 and 96 h of exposure, several parameters were evaluated, such as mortality, individual activity (swimming), biochemical activity (catalase; thiobarbituric acid-reactive substances; and acetylcholinesterase), and cytotoxic responses (micronucleus frequencies). In addition, integrated biomarker response and multivariate analyses were conducted to study the correlation of biomarkers. The calculated Lethal Concentration-50 remained constant after all exposure times (24 to 96 h), being the corresponding value 27.79 µg L-1 BDE-209. Furthermore, BDE-209 induced effects on the swimming activity of this species in relation to acetylcholine, since BDE-209 increased, producing oxidative damage at the biochemical level and genotoxicity after 48 h of exposure to 10 and 25 µg L-1 BDE-209. The results indicate that BDE-209 has biochemical, cytotoxic, neurotoxic, and genotoxic potential on G. affinis. In addition, mosquitofish could be used as a good laboratory model to evaluate environmental stressors since they could represent a risk factor for Neotropical species.