Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 229
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Oncologist ; 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38886159

RESUMEN

BACKGROUND: Gastroenteropancreatic neuroendocrine tumors (GEP-NETs) are rare neoplasms with an increasing annual incidence and prevalence. Many are metastatic at presentation or recur following surgical resection and require systemic therapy, for which somatostatin analogs such as octreotide or lanreotide comprise typical first-line therapies. Nonetheless, treatment options remain limited. Epigenetic processes such as histone modifications have been implicated in malignant transformation and progression. In this study, we evaluated the anti-proliferative effects of a histone deacetylase (HDAC) inhibitor, entinostat, which was computationally predicted to show anti-cancer activity, as confirmed in in vitro and in vivo models of GEP-NETs. METHODS: This was a phase II study to evaluate the efficacy and safety of entinostat in patients with relapsed or refractory abdominal NETs. The primary objective was to estimate the objective response rate to entinostat. Additionally, with each patient as his/her own control we estimated the rates of tumor growth prior to enrollment on study and while receiving entinostat. Patients received 5 mg entinostat weekly until disease progression or intolerable toxicity. The dose could be changed to 10 mg biweekly for patients who did not experience grade ≥ 2 treatment-related adverse events (AEs) in cycle 1, but was primarily administered at the starting 5 mg weekly dose. RESULTS: The study enrolled only 5 patients due to early termination by the drug sponsor. The first patient that enrolled had advanced disease and died within days of enrollment before follow-up imaging due to a grade 5 AE unrelated to study treatment and was considered non-evaluable. Best RECIST response for the remaining 4 patients was stable disease (SD) with time on study of 154+, 243, 574, and 741 days. With each patient as his/her own control, rates of tumor growth on entinostat were markedly reduced with rates 20%, 33%, 54%, and 68% of the rates prior to enrollment on study. Toxicities possibly or definitely related to entinostat included grade 2/3 neutrophil count decrease [2/4 (50%)/ 2/4 (50%)], grade 3 hypophosphatemia [1/4, (25%)], grade 1/2 fatigue [1/4 (25%)/ 2/4 (50%)], and other self-limiting grade 1/2 AEs. CONCLUSION: In the treatment of relapsed or refractory abdominal NETs, entinostat 5 mg weekly led to prolonged SD and reduced the rate of tumor growth by 32% to 80% with an acceptable safety profile (ClinicalTrials.gov Identifier: NCT03211988).

2.
Cell ; 187(12): 3056-3071.e17, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38848678

RESUMEN

The currently accepted intestinal epithelial cell organization model proposes that Lgr5+ crypt-base columnar (CBC) cells represent the sole intestinal stem cell (ISC) compartment. However, previous studies have indicated that Lgr5+ cells are dispensable for intestinal regeneration, leading to two major hypotheses: one favoring the presence of a quiescent reserve ISC and the other calling for differentiated cell plasticity. To investigate these possibilities, we studied crypt epithelial cells in an unbiased fashion via high-resolution single-cell profiling. These studies, combined with in vivo lineage tracing, show that Lgr5 is not a specific ISC marker and that stemness potential exists beyond the crypt base and resides in the isthmus region, where undifferentiated cells participate in intestinal homeostasis and regeneration following irradiation (IR) injury. Our results provide an alternative model of intestinal epithelial cell organization, suggesting that stemness potential is not restricted to CBC cells, and neither de-differentiation nor reserve ISC are drivers of intestinal regeneration.


Asunto(s)
Homeostasis , Mucosa Intestinal , Receptores Acoplados a Proteínas G , Regeneración , Células Madre , Animales , Células Madre/metabolismo , Células Madre/citología , Ratones , Mucosa Intestinal/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Intestinos/citología , Diferenciación Celular , Ratones Endogámicos C57BL , Células Epiteliales/metabolismo , Análisis de la Célula Individual , Masculino
3.
bioRxiv ; 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38915499

RESUMEN

Cell type-specific alternative splicing (AS) enables differential gene isoform expression between diverse neuron types with distinct identities and functions. Current studies linking individual RNA-binding proteins (RBPs) to AS in a few neuron types underscore the need for holistic modeling. Here, we use network reverse engineering to derive a map of the neuron type-specific AS regulatory landscape from 133 mouse neocortical cell types defined by single-cell transcriptomes. This approach reliably inferred the regulons of 350 RBPs and their cell type-specific activities. Our analysis revealed driving factors delineating neuronal identities, among which we validated Elavl2 as a key RBP for MGE-specific splicing in GABAergic interneurons using an in vitro ESC differentiation system. We also identified a module of exons and candidate regulators specific for long- and short-projection neurons across multiple neuronal classes. This study provides a resource for elucidating splicing regulatory programs that drive neuronal molecular diversity, including those that do not align with gene expression-based classifications.

4.
Stem Cell Reports ; 19(5): 689-709, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38701778

RESUMEN

Embryo size, specification, and homeostasis are regulated by a complex gene regulatory and signaling network. Here we used gene expression signatures of Wnt-activated mouse embryonic stem cell (mESC) clones to reverse engineer an mESC regulatory network. We identify NKX1-2 as a novel master regulator of preimplantation embryo development. We find that Nkx1-2 inhibition reduces nascent RNA synthesis, downregulates genes controlling ribosome biogenesis, RNA translation, and transport, and induces severe alteration of nucleolus structure, resulting in the exclusion of RNA polymerase I from nucleoli. In turn, NKX1-2 loss of function leads to chromosome missegregation in the 2- to 4-cell embryo stages, severe decrease in blastomere numbers, alterations of tight junctions (TJs), and impairment of microlumen coarsening. Overall, these changes impair the blastocoel expansion-collapse cycle and embryo cavitation, leading to altered lineage specification and developmental arrest.


Asunto(s)
Desarrollo Embrionario , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio , Animales , Ratones , Desarrollo Embrionario/genética , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/genética , Células Madre Embrionarias de Ratones/metabolismo , Células Madre Embrionarias de Ratones/citología , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Blastocisto/metabolismo , Blastocisto/citología , Vía de Señalización Wnt , Proteínas Wnt/metabolismo , Uniones Estrechas/metabolismo , Nucléolo Celular/metabolismo
5.
bioRxiv ; 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38766189

RESUMEN

Despite the potential of targeted epigenetic therapies, most cancers do not respond to current epigenetic drugs. The Polycomb repressive complex EZH2 inhibitor tazemetostat was recently approved for the treatment of SMARCB1-deficient epithelioid sarcomas, based on the functional antagonism between PRC2 and loss of SMARCB1. Through the analysis of tazemetostat-treated patient tumors, we recently defined key principles of their response and resistance to EZH2 epigenetic therapy. Here, using transcriptomic inference from SMARCB1-deficient tumor cells, we nominate the DNA damage repair kinase ATR as a target for rational combination EZH2 epigenetic therapy. We show that EZH2 inhibition promotes DNA damage in epithelioid and rhabdoid tumor cells, at least in part via its induction of the transposase-derived PGBD5. We leverage this collateral synthetic lethal dependency to target PGBD5-dependent DNA damage by inhibition of ATR but not CHK1 using elimusertib. Consequently, combined EZH2 and ATR inhibition improves therapeutic responses in diverse patient-derived epithelioid and rhabdoid tumors in vivo. This advances a combination epigenetic therapy based on EZH2-PGBD5 synthetic lethal dependency suitable for immediate translation to clinical trials for patients.

6.
bioRxiv ; 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38798673

RESUMEN

Tumors frequently harbor isogenic yet epigenetically distinct subpopulations of multi-potent cells with high tumor-initiating potential-often called Cancer Stem-Like Cells (CSLCs). These can display preferential resistance to standard-of-care chemotherapy. Single-cell analyses can help elucidate Master Regulator (MR) proteins responsible for governing the transcriptional state of these cells, thus revealing complementary dependencies that may be leveraged via combination therapy. Interrogation of single-cell RNA sequencing profiles from seven metastatic breast cancer patients, using perturbational profiles of clinically relevant drugs, identified drugs predicted to invert the activity of MR proteins governing the transcriptional state of chemoresistant CSLCs, which were then validated by CROP-seq assays. The top drug, the anthelmintic albendazole, depleted this subpopulation in vivo without noticeable cytotoxicity. Moreover, sequential cycles of albendazole and paclitaxel-a commonly used chemotherapeutic -displayed significant synergy in a patient-derived xenograft (PDX) from a TNBC patient, suggesting that network-based approaches can help develop mechanism-based combinatorial therapies targeting complementary subpopulations.

7.
Nat Commun ; 15(1): 3909, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724493

RESUMEN

Aberrant signaling pathway activity is a hallmark of tumorigenesis and progression, which has guided targeted inhibitor design for over 30 years. Yet, adaptive resistance mechanisms, induced by rapid, context-specific signaling network rewiring, continue to challenge therapeutic efficacy. Leveraging progress in proteomic technologies and network-based methodologies, we introduce Virtual Enrichment-based Signaling Protein-activity Analysis (VESPA)-an algorithm designed to elucidate mechanisms of cell response and adaptation to drug perturbations-and use it to analyze 7-point phosphoproteomic time series from colorectal cancer cells treated with clinically-relevant inhibitors and control media. Interrogating tumor-specific enzyme/substrate interactions accurately infers kinase and phosphatase activity, based on their substrate phosphorylation state, effectively accounting for signal crosstalk and sparse phosphoproteome coverage. The analysis elucidates time-dependent signaling pathway response to each drug perturbation and, more importantly, cell adaptive response and rewiring, experimentally confirmed by CRISPR knock-out assays, suggesting broad applicability to cancer and other diseases.


Asunto(s)
Neoplasias del Colon , Resistencia a Antineoplásicos , Fosfoproteínas , Proteómica , Transducción de Señal , Humanos , Resistencia a Antineoplásicos/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Proteómica/métodos , Fosfoproteínas/metabolismo , Transducción de Señal/efectos de los fármacos , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/metabolismo , Neoplasias del Colon/genética , Línea Celular Tumoral , Fosforilación , Algoritmos , Proteoma/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico
8.
bioRxiv ; 2024 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-38559080

RESUMEN

Diffuse Midline Gliomas (DMGs) are universally fatal, primarily pediatric malignancies affecting the midline structures of the central nervous system. Despite decades of clinical trials, treatment remains limited to palliative radiation therapy. A major challenge is the coexistence of molecularly distinct malignant cell states with potentially orthogonal drug sensitivities. To address this challenge, we leveraged established network-based methodologies to elucidate Master Regulator (MR) proteins representing mechanistic, non-oncogene dependencies of seven coexisting subpopulations identified by single-cell analysis-whose enrichment in essential genes was validated by pooled CRISPR/Cas9 screens. Perturbational profiles of 372 clinically relevant drugs helped identify those able to invert the activity of subpopulation-specific MRs for follow-up in vivo validation. While individual drugs predicted to target individual subpopulations-including avapritinib, larotrectinib, and ruxolitinib-produced only modest tumor growth reduction in orthotopic models, systemic co-administration induced significant survival extension, making this approach a valuable contribution to the rational design of combination therapy.

9.
Cell ; 187(4): 861-881.e32, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38301646

RESUMEN

Genomic instability can trigger cancer-intrinsic innate immune responses that promote tumor rejection. However, cancer cells often evade these responses by overexpressing immune checkpoint regulators, such as PD-L1. Here, we identify the SNF2-family DNA translocase SMARCAL1 as a factor that favors tumor immune evasion by a dual mechanism involving both the suppression of innate immune signaling and the induction of PD-L1-mediated immune checkpoint responses. Mechanistically, SMARCAL1 limits endogenous DNA damage, thereby suppressing cGAS-STING-dependent signaling during cancer cell growth. Simultaneously, it cooperates with the AP-1 family member JUN to maintain chromatin accessibility at a PD-L1 transcriptional regulatory element, thereby promoting PD-L1 expression in cancer cells. SMARCAL1 loss hinders the ability of tumor cells to induce PD-L1 in response to genomic instability, enhances anti-tumor immune responses and sensitizes tumors to immune checkpoint blockade in a mouse melanoma model. Collectively, these studies uncover SMARCAL1 as a promising target for cancer immunotherapy.


Asunto(s)
Antígeno B7-H1 , ADN Helicasas , Inmunidad Innata , Melanoma , Escape del Tumor , Animales , Ratones , Antígeno B7-H1/metabolismo , Inestabilidad Genómica , Melanoma/inmunología , Melanoma/metabolismo , ADN Helicasas/metabolismo
10.
Cell Chem Biol ; 31(4): 805-819.e9, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38061356

RESUMEN

Transcription factors have proven difficult to target with small molecules because they lack pockets necessary for potent binding. Disruption of protein expression can suppress targets and enable therapeutic intervention. To this end, we developed a drug discovery workflow that incorporates cell-line-selective screening and high-throughput expression profiling followed by regulatory network analysis to identify compounds that suppress regulatory drivers of disease. Applying this approach to neuroblastoma (NBL), we screened bioactive molecules in cell lines representing its MYC-dependent (MYCNA) and mesenchymal (MES) subtypes to identify selective compounds, followed by PLATESeq profiling of treated cells. This revealed compounds that disrupt a sub-network of MYCNA-specific regulatory proteins, resulting in MYCN degradation in vivo. The top hit was isopomiferin, a prenylated isoflavonoid that inhibited casein kinase 2 (CK2) in cells. Isopomiferin and its structural analogs inhibited MYC and MYCN in NBL and lung cancer cells, highlighting the general MYC-inhibiting potential of this unique scaffold.

11.
Cancer Discov ; 14(2): 348-361, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-37966260

RESUMEN

The sparse vascularity of pancreatic ductal adenocarcinoma (PDAC) presents a mystery: What prevents this aggressive malignancy from undergoing neoangiogenesis to counteract hypoxia and better support growth? An incidental finding from prior work on paracrine communication between malignant PDAC cells and fibroblasts revealed that inhibition of the Hedgehog (HH) pathway partially relieved angiosuppression, increasing tumor vascularity through unknown mechanisms. Initial efforts to study this phenotype were hindered by difficulties replicating the complex interactions of multiple cell types in vitro. Here we identify a cascade of paracrine signals between multiple cell types that act sequentially to suppress angiogenesis in PDAC. Malignant epithelial cells promote HH signaling in fibroblasts, leading to inhibition of noncanonical WNT signaling in fibroblasts and epithelial cells, thereby limiting VEGFR2-dependent activation of endothelial hypersprouting. This cascade was elucidated using human and murine PDAC explant models, which effectively retain the complex cellular interactions of native tumor tissues. SIGNIFICANCE: We present a key mechanism of tumor angiosuppression, a process that sculpts the physiologic, cellular, and metabolic environment of PDAC. We further present a computational and experimental framework for the dissection of complex signaling cascades that propagate among multiple cell types in the tissue environment. This article is featured in Selected Articles from This Issue, p. 201.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animales , Humanos , Ratones , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Proliferación Celular , Proteínas Hedgehog/genética , Neoplasias Pancreáticas/patología , Factor A de Crecimiento Endotelial Vascular
12.
ACS Med Chem Lett ; 14(12): 1664-1672, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38116412

RESUMEN

We previously identified the natural products isopomiferin and pomiferin as powerful, indirect MYCN-ablating agents. In this work, we expand on their mechanism of action and find that casein kinase 2 (CK2), phosphoinositide 3-kinase (PI3K), checkpoint kinase 1 (CHK1) and serine/threonine protein kinase 38-like (STK38L), as well as STK38, work synchronously to create a field effect that maintains MYCN stability. By systematically inhibiting these kinases, we degraded MYCN and induced cell death. Additionally, we synthesized and tested several simpler and more cost-effective pomiferin analogues, which successfully emulated the compound's MYCN ablating activity. Our work identified and characterized key kinases that can be targeted to interfere with the stability of the MYCN protein in NBL cells, demonstrating the efficacy of an indirect approach to targeting "undruggable" cancer drivers.

13.
Cancer Cell ; 41(11): 1972-1988.e5, 2023 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-37922910

RESUMEN

When compared to other malignancies, the tumor microenvironment (TME) of primary and castration-resistant prostate cancer (CRPC) is relatively devoid of immune infiltrates. While androgen deprivation therapy (ADT) induces a complex immune infiltrate in localized prostate cancer, the composition of the TME in metastatic castration-sensitive prostate cancer (mCSPC), and the effects of ADT and other treatments in this context are poorly understood. Here, we perform a comprehensive single-cell RNA sequencing (scRNA-seq) profiling of metastatic sites from patients participating in a phase 2 clinical trial (NCT03951831) that evaluated standard-of-care chemo-hormonal therapy combined with anti-PD-1 immunotherapy. We perform a longitudinal, protein activity-based analysis of TME subpopulations, revealing immune subpopulations conserved across multiple metastatic sites. We also observe dynamic changes in these immune subpopulations in response to treatment and a correlation with clinical outcomes. Our study uncovers a therapy-resistant, transcriptionally distinct tumor subpopulation that expands in cell number in treatment-refractory patients.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Neoplasias de la Próstata , Masculino , Humanos , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética , Antagonistas de Andrógenos/uso terapéutico , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/genética , Andrógenos/uso terapéutico , Inmunoterapia , Castración , Microambiente Tumoral
14.
Cancer Res Commun ; 3(12): 2518-2530, 2023 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-38014922

RESUMEN

MYCN-amplified neuroblastoma often presents as a highly aggressive metastatic disease with a poor prognosis. Activating transcription factor 5 (ATF5) is implicated in neural cell differentiation and cancer cell survival. Here, we show that ATF5 is highly expressed in patients with stage 4 high-risk neuroblastoma, with increased expression correlating with a poorer prognosis. We demonstrated that ATF5 promotes the metastasis of neuroblastoma cell lines in vivo. Functionally, ATF5 depletion significantly reduced xenograft tumor growth and metastasis of neuroblastoma cells to the bone marrow and liver. Mechanistically, ATF5 endows tumor cells with resistance to anoikis, thereby increasing their survival in systemic circulation and facilitating metastasis. We identified the proapoptotic BCL-2 modifying factor (BMF) as a critical player in ATF5-regulated neuroblastoma anoikis. ATF5 suppresses BMF under suspension conditions at the transcriptional level, promoting anoikis resistance, whereas BMF knockdown significantly prevents ATF5 depletion-induced anoikis. Therapeutically, we showed that a cell-penetrating dominant-negative ATF5 peptide, CP-d/n-ATF5, inhibits neuroblastoma metastasis to the bone marrow and liver by inducing anoikis sensitivity in circulating tumor cells. Our study identified ATF5 as a metastasis promoter and CP-d/n-ATF5 as a potential antimetastatic therapeutic agent for neuroblastoma. SIGNIFICANCE: This study shows that resistance to anoikis in neuroblastoma is mediated by ATF5 and offers a rationale for targeting ATF5 to treat metastatic neuroblastoma.


Asunto(s)
Antineoplásicos , Neuroblastoma , Humanos , Anoicis/genética , Proteína de Unión a Elemento de Respuesta al AMP Cíclico , Neuroblastoma/tratamiento farmacológico , Antineoplásicos/farmacología , Factores de Transcripción Activadores
15.
bioRxiv ; 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37873470

RESUMEN

The Mechanism of Action (MoA) of a drug is generally represented as a small, non-tissue-specific repertoire of high-affinity binding targets. Yet, drug activity and polypharmacology are increasingly associated with a broad range of off-target and tissue-specific effector proteins. To address this challenge, we have implemented an efficient integrative experimental and computational framework leveraging the systematic generation and analysis of drug perturbational profiles representing >700 FDA-approved and experimental oncology drugs, in cell lines selected as high-fidelity models of 23 aggressive tumor subtypes. Protein activity-based analyses revealed highly reproducible, drug-mediated modulation of tissue-specific targets, leading to generation of a proteome-wide polypharmacology map, characterization of MoA-related drug clusters and off-target effects, and identification and experimental validation of novel, tissue-specific inhibitors of undruggable oncoproteins. The proposed framework, which is easily extended to elucidating the MoA of novel small-molecule libraries, could help support more systematic and quantitative approaches to precision oncology.

16.
Cell Stem Cell ; 30(8): 1091-1109.e7, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37541213

RESUMEN

While adult pancreatic stem cells are thought not to exist, it is now appreciated that the acinar compartment harbors progenitors, including tissue-repairing facultative progenitors (FPs). Here, we study a pancreatic acinar population marked by trefoil factor 2 (Tff2) expression. Long-term lineage tracing and single-cell RNA sequencing (scRNA-seq) analysis of Tff2-DTR-CreERT2-targeted cells defines a transit-amplifying progenitor (TAP) population that contributes to normal homeostasis. Following acute and chronic injury, Tff2+ cells, distinct from FPs, undergo depopulation but are eventually replenished. At baseline, oncogenic KrasG12D-targeted Tff2+ cells are resistant to PDAC initiation. However, KrasG12D activation in Tff2+ cells leads to survival and clonal expansion following pancreatitis and a cancer stem/progenitor cell-like state. Selective ablation of Tff2+ cells prior to KrasG12D activation in Mist1+ acinar or Dclk1+ FP cells results in enhanced tumorigenesis, which can be partially rescued by adenoviral Tff2 treatment. Together, Tff2 defines a pancreatic TAP population that protects against Kras-driven carcinogenesis.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/genética , Factor Trefoil-2/metabolismo , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Páncreas/metabolismo , Células Acinares/metabolismo , Carcinogénesis/genética , Carcinogénesis/metabolismo
17.
bioRxiv ; 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37502956

RESUMEN

The clinical use of potent androgen receptor (AR) inhibitors has promoted the emergence of novel subtypes of metastatic castration-resistant prostate cancer (mCRPC), including neuroendocrine prostate cancer (CRPC-NE), which is highly aggressive and lethal 1 . These mCRPC subtypes display increased lineage plasticity and often lack AR expression 2-5 . Here we show that neuroendocrine differentiation and castration-resistance in CRPC-NE are maintained by the activity of Nuclear Receptor Binding SET Domain Protein 2 (NSD2) 6 , which catalyzes histone H3 lysine 36 dimethylation (H3K36me2). We find that organoid lines established from genetically-engineered mice 7 recapitulate key features of human CRPC-NE, and can display transdifferentiation to neuroendocrine states in culture. CRPC-NE organoids express elevated levels of NSD2 and H3K36me2 marks, but relatively low levels of H3K27me3, consistent with antagonism of EZH2 activity by H3K36me2. Human CRPC-NE but not primary NEPC tumors expresses high levels of NSD2, consistent with a key role for NSD2 in lineage plasticity, and high NSD2 expression in mCRPC correlates with poor survival outcomes. Notably, CRISPR/Cas9 targeting of NSD2 or expression of a dominant-negative oncohistone H3.3K36M mutant results in loss of neuroendocrine phenotypes and restores responsiveness to the AR inhibitor enzalutamide in mouse and human CRPC-NE organoids and grafts. Our findings indicate that NSD2 inhibition can reverse lineage plasticity and castration-resistance, and provide a potential new therapeutic target for CRPC-NE.

18.
Nat Commun ; 14(1): 3966, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37407562

RESUMEN

KRAS is a frequent driver in lung cancer. To identify KRAS-specific vulnerabilities in lung cancer, we performed RNAi screens in primary spheroids derived from a Kras mutant mouse lung cancer model and discovered an epigenetic regulator Ubiquitin-like containing PHD and RING finger domains 1 (UHRF1). In human lung cancer models UHRF1 knock-out selectively impaired growth and induced apoptosis only in KRAS mutant cells. Genome-wide methylation and gene expression analysis of UHRF1-depleted KRAS mutant cells revealed global DNA hypomethylation leading to upregulation of tumor suppressor genes (TSGs). A focused CRISPR/Cas9 screen validated several of these TSGs as mediators of UHRF1-driven tumorigenesis. In vivo, UHRF1 knock-out inhibited tumor growth of KRAS-driven mouse lung cancer models. Finally, in lung cancer patients high UHRF1 expression is anti-correlated with TSG expression and predicts worse outcomes for patients with KRAS mutant tumors. These results nominate UHRF1 as a KRAS-specific vulnerability and potential target for therapeutic intervention.


Asunto(s)
Adenocarcinoma del Pulmón , Proteínas Potenciadoras de Unión a CCAAT , Neoplasias Pulmonares , Ubiquitina-Proteína Ligasas , Animales , Humanos , Ratones , Adenocarcinoma del Pulmón/genética , Proteínas Potenciadoras de Unión a CCAAT/genética , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Transformación Celular Neoplásica/genética , Metilación de ADN , Epigénesis Genética , Neoplasias Pulmonares/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
19.
Nat Commun ; 14(1): 2947, 2023 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-37268690

RESUMEN

Derangements of the blood-brain barrier (BBB) or blood-retinal barrier (BRB) occur in disorders ranging from stroke, cancer, diabetic retinopathy, and Alzheimer's disease. The Norrin/FZD4/TSPAN12 pathway activates WNT/ß-catenin signaling, which is essential for BBB and BRB function. However, systemic pharmacologic FZD4 stimulation is hindered by obligate palmitoylation and insolubility of native WNTs and suboptimal properties of the FZD4-selective ligand Norrin. Here, we develop L6-F4-2, a non-lipidated, FZD4-specific surrogate which significantly improves subpicomolar affinity versus native Norrin. In Norrin knockout (NdpKO) mice, L6-F4-2 not only potently reverses neonatal retinal angiogenesis deficits, but also restores BRB and BBB function. In adult C57Bl/6J mice, post-stroke systemic delivery of L6-F4-2 strongly reduces BBB permeability, infarction, and edema, while improving neurologic score and capillary pericyte coverage. Our findings reveal systemic efficacy of a bioengineered FZD4-selective WNT surrogate during ischemic BBB dysfunction, with potential applicability to adult CNS disorders characterized by an aberrant blood-brain barrier.


Asunto(s)
Barrera Hematoencefálica , Receptores Frizzled , Ratones , Animales , Barrera Hematoencefálica/metabolismo , Receptores Frizzled/genética , Receptores Frizzled/metabolismo , Retina/metabolismo , Barrera Hematorretinal/metabolismo , Vía de Señalización Wnt
20.
bioRxiv ; 2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-37205498

RESUMEN

While the functional effects of many recurrent cancer mutations have been characterized, the TCGA repository comprises more than 10M non-recurrent events, whose function is unknown. We propose that the context specific activity of transcription factor (TF) proteins-as measured by expression of their transcriptional targets-provides a sensitive and accurate reporter assay to assess the functional role of oncoprotein mutations. Analysis of differentially active TFs in samples harboring mutations of unknown significance-compared to established gain (GOF/hypermorph) or loss (LOF/hypomorph) of function-helped functionally characterize 577,866 individual mutational events across TCGA cohorts, including identification of mutations that are either neomorphic (gain of novel function) or phenocopy other mutations ( mutational mimicry ). Validation using mutation knock-in assays confirmed 15 out of 15 predicted gain and loss of function mutations and 15 of 20 predicted neomorphic mutations. This could help determine targeted therapy in patients with mutations of unknown significance in established oncoproteins.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA