RESUMEN
Background: Artificial intelligence (AI) has proved to be of great value in diagnosing and managing Sars-Cov-2 infection. ALFABETO (ALL-FAster-BEtter-TOgether) is a tool created to support healthcare professionals in the triage, mainly in optimizing hospital admissions. Methods: The AI was trained during the pandemic's "first wave" (February-April 2020). Our aim was to assess the performance during the "third wave" of the pandemics (February-April 2021) and evaluate its evolution. The neural network proposed behavior (hospitalization vs home care) was compared with what was actually done. If there were discrepancies between ALFABETO's predictions and clinicians' decisions, the disease's progression was monitored. Clinical course was defined as "favorable/mild" if patients could be managed at home or in spoke centers and "unfavorable/severe" if patients need to be managed in a hub center. Results: ALFABETO showed accuracy of 76%, AUROC of 83%; specificity was 78% and recall 74%. ALFABETO also showed high precision (88%). 81 hospitalized patients were incorrectly predicted to be in "home care" class. Among those "home-cared" by the AI and "hospitalized" by the clinicians, 3 out of 4 misclassified patients (76.5%) showed a favorable/mild clinical course. ALFABETO's performance matched the reports in literature. Conclusions: The discrepancies mostly occurred when the AI predicted patients could stay at home but clinicians hospitalized them; these cases could be handled in spoke centers rather than hubs, and the discrepancies may aid clinicians in patient selection. The interaction between AI and human experience has the potential to improve both AI performance and our comprehension of pandemic management.
RESUMEN
Recent epidemiological data report that worldwide more than 53 million people have been infected by SARS-CoV-2, resulting in 1.3 million deaths. The disease has been spreading very rapidly and few months after the identification of the first infected, shortage of hospital resources quickly became a problem. In this work we investigate whether artificial intelligence working with chest X-ray (CXR) scans and clinical data can be used as a possible tool for the early identification of patients at risk of severe outcome, like intensive care or death. Indeed, further to induce lower radiation dose than computed tomography (CT), CXR is a simpler and faster radiological technique, being also more widespread. In this respect, we present three approaches that use features extracted from CXR images, either handcrafted or automatically learnt by convolutional neuronal networks, which are then integrated with the clinical data. As a further contribution, this work introduces a repository that collects data from 820 patients enrolled in six Italian hospitals in spring 2020 during the first COVID-19 emergency. The dataset includes CXR images, several clinical attributes and clinical outcomes. Exhaustive evaluation shows promising performance both in 10-fold and leave-one-centre-out cross-validation, suggesting that clinical data and images have the potential to provide useful information for the management of patients and hospital resources.