Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Cell Rep ; 43(8): 114538, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39058590

RESUMEN

Repair of DNA double-strand breaks by the non-homologous end-joining pathway is initiated by the binding of Ku to DNA ends. Multiple Ku proteins load onto linear DNAs in vitro. However, in cells, Ku loading is limited to ∼1-2 molecules per DNA end. The mechanisms enforcing this limit are currently unclear. Here, we show that the catalytic subunit of the DNA-dependent protein kinase (DNA-PKcs), but not its protein kinase activity, is required to prevent excessive Ku entry into chromatin. Ku accumulation is further restricted by two mechanisms: a neddylation/FBXL12-dependent process that actively removes loaded Ku molecules throughout the cell cycle and a CtIP/ATM-dependent mechanism that operates in S phase. Finally, we demonstrate that the misregulation of Ku loading leads to impaired transcription in the vicinity of DNA ends. Together, our data shed light on the multiple mechanisms operating to prevent Ku from invading chromatin and interfering with other DNA transactions.

2.
bioRxiv ; 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38260538

RESUMEN

Repair of DNA double strand breaks by the non-homologous end-joining pathway is initiated by the binding of Ku to DNA ends. Given its high affinity for ends, multiple Ku proteins load onto linear DNAs in vitro. However, in cells, Ku loading is limited to ~1-2 molecules per DNA end. The mechanisms enforcing this limit are currently unknown. Here we show that the catalytic subunit of the DNA-dependent protein kinase (DNA-PKcs), but not its protein kinase activity, is required to prevent excessive Ku entry into chromatin. Ku accumulation is further restricted by two mechanisms: a neddylation/FBXL12-dependent process which actively removes loaded Ku molecules throughout the cell cycle and a CtIP/ATM-dependent mechanism which operates in S-phase. Finally, we demonstrate that the misregulation of Ku loading leads to impaired transcription in the vicinity of DNA ends. Together our data shed light on the multiple layers of coordinated mechanisms operating to prevent Ku from invading chromatin and interfering with other DNA transactions.

3.
Nucleic Acids Res ; 51(21): 11732-11747, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-37870477

RESUMEN

The classical Non-Homologous End Joining (c-NHEJ) pathway is the predominant process in mammals for repairing endogenous, accidental or programmed DNA Double-Strand Breaks. c-NHEJ is regulated by several accessory factors, post-translational modifications, endogenous chemical agents and metabolites. The metabolite inositol-hexaphosphate (IP6) stimulates c-NHEJ by interacting with the Ku70-Ku80 heterodimer (Ku). We report cryo-EM structures of apo- and DNA-bound Ku in complex with IP6, at 3.5 Å and 2.74 Å resolutions respectively, and an X-ray crystallography structure of a Ku in complex with DNA and IP6 at 3.7 Å. The Ku-IP6 interaction is mediated predominantly via salt bridges at the interface of the Ku70 and Ku80 subunits. This interaction is distant from the DNA, DNA-PKcs, APLF and PAXX binding sites and in close proximity to XLF binding site. Biophysical experiments show that IP6 binding increases the thermal stability of Ku by 2°C in a DNA-dependent manner, stabilizes Ku on DNA and enhances XLF affinity for Ku. In cells, selected mutagenesis of the IP6 binding pocket reduces both Ku accrual at damaged sites and XLF enrolment in the NHEJ complex, which translate into a lower end-joining efficiency. Thus, this study defines the molecular bases of the IP6 metabolite stimulatory effect on the c-NHEJ repair activity.


Asunto(s)
Proteínas de Unión al ADN , Ácido Fítico , Animales , ADN/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , Proteínas de Unión al ADN/genética , Autoantígeno Ku/metabolismo , Mamíferos/genética , Humanos
4.
Sci Adv ; 9(22): eadg2834, 2023 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-37256950

RESUMEN

Nonhomologous end joining is a critical mechanism that repairs DNA double-strand breaks in human cells. In this work, we address the structural and functional role of the accessory protein PAXX [paralog of x-ray repair cross-complementing protein 4 (XRCC4) and XRCC4-like factor (XLF)] in this mechanism. Here, we report high-resolution cryo-electron microscopy (cryo-EM) and x-ray crystallography structures of the PAXX C-terminal Ku-binding motif bound to Ku70/80 and cryo-EM structures of PAXX bound to two alternate DNA-dependent protein kinase (DNA-PK) end-bridging dimers, mediated by either Ku80 or XLF. We identify residues critical for the Ku70/PAXX interaction in vitro and in cells. We demonstrate that PAXX and XLF can bind simultaneously to the Ku heterodimer and act as structural bridges in alternate forms of DNA-PK dimers. Last, we show that engagement of both proteins provides a complementary advantage for DNA end synapsis and end joining in cells.


Asunto(s)
Reparación del ADN por Unión de Extremidades , Enzimas Reparadoras del ADN , Humanos , Microscopía por Crioelectrón , ADN , Enzimas Reparadoras del ADN/genética
5.
Elife ; 112022 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35535493

RESUMEN

Hundreds of cytotoxic natural or synthetic lipidic compounds contain chiral alkynylcarbinol motifs, but the mechanism of action of those potential therapeutic agents remains unknown. Using a genetic screen in haploid human cells, we discovered that the enantiospecific cytotoxicity of numerous terminal alkynylcarbinols, including the highly cytotoxic dialkynylcarbinols, involves a bioactivation by HSD17B11, a short-chain dehydrogenase/reductase (SDR) known to oxidize the C-17 carbinol center of androstan-3-alpha,17-beta-diol to the corresponding ketone. A similar oxidation of dialkynylcarbinols generates dialkynylketones, that we characterize as highly protein-reactive electrophiles. We established that, once bioactivated in cells, the dialkynylcarbinols covalently modify several proteins involved in protein-quality control mechanisms, resulting in their lipoxidation on cysteines and lysines through Michael addition. For some proteins, this triggers their association to cellular membranes and results in endoplasmic reticulum stress, unfolded protein response activation, ubiquitin-proteasome system inhibition and cell death by apoptosis. Finally, as a proof-of-concept, we show that generic lipidic alkynylcarbinols can be devised to be bioactivated by other SDRs, including human RDH11 and HPGD/15-PGDH. Given that the SDR superfamily is one of the largest and most ubiquitous, this unique cytotoxic mechanism-of-action could be widely exploited to treat diseases, in particular cancer, through the design of tailored prodrugs.


Asunto(s)
Antineoplásicos , Deshidrogenasas-Reductasas de Cadena Corta , Antineoplásicos/farmacología , Estrés del Retículo Endoplásmico , Humanos , Lípidos , Respuesta de Proteína Desplegada
6.
Cell Death Dis ; 12(10): 896, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34599155

RESUMEN

Centromeres are defined by chromatin containing the histone H3 variant CENP-A assembled onto repetitive α-satellite sequences, which are actively transcribed throughout the cell cycle. Centromeres play an essential role in chromosome inheritance and genome stability through coordinating kinetochores assembly during mitosis. Structural and functional alterations of the centromeres cause aneuploidy and chromosome aberrations which can induce cell death. In human cells, the tumor suppressor BRCA1 associates with centromeric chromatin in the absence of exogenous damage. While we previously reported that BRCA1 contributes to proper centromere homeostasis, the mechanism underlying its centromeric function and recruitment was not fully understood. Here, we show that BRCA1 association with centromeric chromatin depends on the presence of R-loops, which are non-canonical three-stranded structures harboring a DNA:RNA hybrid and are frequently formed during transcription. Subsequently, BRCA1 counteracts the accumulation of R-loops at centromeric α-satellite repeats. Strikingly, BRCA1-deficient cells show impaired localization of CENP-A, higher transcription of centromeric RNA, increased breakage at centromeres and formation of acentric micronuclei, all these features being R-loop-dependent. Finally, BRCA1 depletion reveals a Rad52-dependent hyper-recombination process between centromeric satellite repeats, associated with centromere instability and missegregation. Altogether, our findings provide molecular insights into the key function of BRCA1 in maintaining centromere stability and identity.


Asunto(s)
Proteína BRCA1/metabolismo , Centrómero/metabolismo , Estructuras R-Loop , Línea Celular Tumoral , Roturas del ADN de Doble Cadena , ADN Satélite/genética , Humanos , Modelos Biológicos , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , Recombinación Genética/genética
7.
Nucleic Acids Res ; 49(17): 9906-9925, 2021 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-34500463

RESUMEN

Replication-associated single-ended DNA double-strand breaks (seDSBs) are repaired predominantly through RAD51-mediated homologous recombination (HR). Removal of the non-homologous end-joining (NHEJ) factor Ku from resected seDSB ends is crucial for HR. The coordinated actions of MRE11-CtIP nuclease activities orchestrated by ATM define one pathway for Ku eviction. Here, we identify the pre-mRNA splicing protein XAB2 as a factor required for resistance to seDSBs induced by the chemotherapeutic alkylator temozolomide. Moreover, we show that XAB2 prevents Ku retention and abortive HR at seDSBs induced by temozolomide and camptothecin, via a pathway that operates in parallel to the ATM-CtIP-MRE11 axis. Although XAB2 depletion preserved RAD51 focus formation, the resulting RAD51-ssDNA associations were unproductive, leading to increased NHEJ engagement in S/G2 and genetic instability. Overexpression of RAD51 or RAD52 rescued the XAB2 defects and XAB2 loss was synthetically lethal with RAD52 inhibition, providing potential perspectives in cancer therapy.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades/genética , Autoantígeno Ku/metabolismo , Factores de Empalme de ARN/metabolismo , Alquilantes/efectos adversos , Alquilantes/farmacología , Camptotecina/efectos adversos , Camptotecina/farmacología , Línea Celular Tumoral , Endodesoxirribonucleasas/metabolismo , Glioblastoma/tratamiento farmacológico , Recombinación Homóloga/genética , Humanos , Proteína Homóloga de MRE11/metabolismo , Interferencia de ARN , Factores de Empalme de ARN/genética , ARN Interferente Pequeño/genética , Recombinasa Rad51/metabolismo , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , Temozolomida/efectos adversos , Temozolomida/farmacología
8.
Elife ; 102021 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-34180392

RESUMEN

G-quadruplexes (G4) are non-canonical DNA structures found in the genome of most species including human. Small molecules stabilizing these structures, called G4 ligands, have been identified and, for some of them, shown to induce cytotoxic DNA double-strand breaks. Through the use of an unbiased genetic approach, we identify here topoisomerase 2α (TOP2A) as a major effector of cytotoxicity induced by two clastogenic G4 ligands, pyridostatin and CX-5461, the latter molecule currently undergoing phase I/II clinical trials in oncology. We show that both TOP2 activity and transcription account for DNA break production following G4 ligand treatments. In contrast, clastogenic activity of these G4 ligands is countered by topoisomerase 1 (TOP1), which limits co-transcriptional G4 formation, and by factors promoting transcriptional elongation. Altogether our results support that clastogenic G4 ligands act as DNA structure-driven TOP2 poisons at transcribed regions bearing G4 structures.


Asunto(s)
Aminoquinolinas/farmacología , Antineoplásicos/farmacología , Benzotiazoles/farmacología , ADN-Topoisomerasas de Tipo II/metabolismo , Naftiridinas/farmacología , Ácidos Picolínicos/farmacología , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Línea Celular , Proliferación Celular , Supervivencia Celular/efectos de los fármacos , Ensayo de Unidades Formadoras de Colonias , Roturas del ADN de Doble Cadena , ADN-Topoisomerasas de Tipo I/genética , ADN-Topoisomerasas de Tipo I/metabolismo , ADN-Topoisomerasas de Tipo II/genética , G-Cuádruplex , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Humanos , Proteínas de Unión a Poli-ADP-Ribosa/genética , Polimorfismo de Nucleótido Simple , Interferencia de ARN , RNA-Seq
9.
Nucleic Acids Res ; 48(17): 9710-9723, 2020 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-32890395

RESUMEN

Two DNA repair pathways operate at DNA double strand breaks (DSBs): non-homologous end-joining (NHEJ), that requires two adjacent DNA ends for ligation, and homologous recombination (HR), that resects one DNA strand for invasion of a homologous duplex. Faithful repair of replicative single-ended DSBs (seDSBs) is mediated by HR, due to the lack of a second DNA end for end-joining. ATM stimulates resection at such breaks through multiple mechanisms including CtIP phosphorylation, which also promotes removal of the DNA-ends sensor and NHEJ protein Ku. Here, using a new method for imaging the recruitment of the Ku partner DNA-PKcs at DSBs, we uncover an unanticipated role of ATM in removing DNA-PKcs from seDSBs in human cells. Phosphorylation of DNA-PKcs on the ABCDE cluster is necessary not only for DNA-PKcs clearance but also for the subsequent MRE11/CtIP-dependent release of Ku from these breaks. We propose that at seDSBs, ATM activity is necessary for the release of both Ku and DNA-PKcs components of the NHEJ apparatus, and thereby prevents subsequent aberrant interactions between seDSBs accompanied by DNA-PKcs autophosphorylation and detrimental commitment to Lig4-dependent end-joining.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades/fisiología , Proteína Quinasa Activada por ADN/metabolismo , Autoantígeno Ku/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/genética , Camptotecina/farmacología , Línea Celular , Reparación del ADN por Unión de Extremidades/efectos de los fármacos , ADN Ligasa (ATP)/genética , ADN Ligasa (ATP)/metabolismo , ADN de Cadena Simple , Proteína Quinasa Activada por ADN/genética , Humanos , Autoantígeno Ku/genética , Proteína Homóloga de MRE11/genética , Proteína Homóloga de MRE11/metabolismo , Fosforilación , Inhibidores de Topoisomerasa I/farmacología
10.
Cell Rep ; 28(12): 3167-3181.e6, 2019 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-31533039

RESUMEN

Although accumulation of DNA damage and genomic instability in resting cells can cause neurodegenerative disorders, our understanding of how transcription produces DNA double-strand breaks (DSBs) is limited. Transcription-blocking topoisomerase I cleavage complexes (TOP1ccs) are frequent events that prime DSB production in non-replicating cells. Here, we report a mechanism of their formation by showing that they arise from two nearby single-strand breaks (SSBs) on opposing DNA strands: one SSB from the removal of transcription-blocking TOP1ccs by the TDP1 pathway and the other from the cleavage of R-loops by endonucleases, including XPF, XPG, and FEN1. Genetic defects in TOP1cc removal (TDP1, PNKP, and XRCC1) or in the resolution of R-loops (SETX) enhance DSB formation and prevent their repair. Such deficiencies cause neurological disorders. Owing to the high frequency of TOP1cc trapping and the widespread distribution of R-loops, these persistent transcriptional DSBs could accumulate over time in neuronal cells, contributing to the neurodegenerative diseases.


Asunto(s)
Roturas del ADN de Doble Cadena , Roturas del ADN de Cadena Simple , ADN-Topoisomerasas de Tipo I/metabolismo , Estructuras R-Loop , Línea Celular , Proteínas de Unión al ADN/metabolismo , Endonucleasas/metabolismo , Endonucleasas de ADN Solapado/metabolismo , Humanos , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo
11.
Nucleic Acids Res ; 47(15): 7901-7913, 2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31219592

RESUMEN

Guanine-rich DNA strands can fold into non-canonical four-stranded secondary structures named G-quadruplexes (G4). Experimental evidences suggest that G4-DNA surrounding transcription start sites act as cis-regulatory elements by either stimulating or inhibiting gene transcription. Therefore, proteins able to target and regulate specific G4 formation/unfolding are crucial for G4-mediated transcriptional control. Here we present data revealing that CNBP acts in vitro as a G4-unfolding protein over a tetramolecular G4 formed by the TG4T oligonucleotide, as well as over the G4 folded in the promoters of several oncogenes. CNBP depletion in cellulo led to a reduction in the transcription of endogenous KRAS, suggesting a regulatory role of CNBP in relieving the transcriptional abrogation due to G4 formation. CNBP activity was also assayed over the evolutionary conserved G4 enhancing the transcription of NOGGIN (NOG) developmental gene. CNBP unfolded in vitro NOG G4 and experiments performed in cellulo and in vivo in developing zebrafish showed a repressive role of CNBP on the transcription of this gene by G4 unwinding. Our results shed light on the mechanisms underlying CNBP way of action, as well as reinforce the notion about the existence and function of G4s in whole living organisms.


Asunto(s)
ADN/química , G-Cuádruplex , Proteínas de Unión al ARN/genética , Transcripción Genética , Proteínas de Pez Cebra/genética , Animales , Animales Modificados Genéticamente , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , ADN/genética , ADN/metabolismo , Embrión no Mamífero , Regulación de la Expresión Génica , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Humanos , Regiones Promotoras Genéticas , Unión Proteica , Proteínas de Unión al ARN/metabolismo , Pez Cebra , Proteínas de Pez Cebra/metabolismo
12.
Dalton Trans ; 48(18): 6091-6099, 2019 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-30860519

RESUMEN

Porphyrins represent a valuable class of ligands for G-quadruplex nucleic acids. Herein, we evaluate the binding of cationic porphyrins metallated with gold(iii) to G-quadruplex DNA and we compare it with other porphyrin derivatives. The G-quadruplex stabilization capacity and the selectivity of the various porphyrins were evaluated by biophysical and biochemical assays. The porphyrins were also tested as inhibitors of telomerase. It clearly appeared that the insertion of gold(iii) ion in the center of the porphyrin increases the binding affinity of the porphyrin for the G-quadruplex target. Together with modelling studies, it is possible to propose that the insertion of the square planar gold(iii) ion adds an extra positive charge on the complex and decreases the electron density in the porphyrin aromatic macrocycle, both properties being in favour of stronger electrostatic and π-staking interactions.

13.
Prog Biophys Mol Biol ; 147: 62-76, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-30851288

RESUMEN

In vertebrates, double-strand breaks in DNA are primarily repaired by Non-Homologous End-Joining (NHEJ). The ring-shaped Ku heterodimer rapidly senses and threads onto broken DNA ends forming a recruiting hub. Through protein-protein contacts eventually reinforced by protein-DNA interactions, the Ku-DNA hub attracts a series of specialized proteins with scaffolding and/or enzymatic properties. To shed light on these dynamic interplays, we review here current knowledge on proteins directly interacting with Ku and on the contact points involved, with a particular accent on the different classes of Ku-binding motifs identified in several Ku partners. An integrated structural model of the core NHEJ network at the synapsis step is proposed.


Asunto(s)
Reparación del ADN por Unión de Extremidades , ADN/genética , ADN/metabolismo , Autoantígeno Ku/metabolismo , Secuencias de Aminoácidos , Animales , Humanos
14.
Chembiochem ; 19(23): 2438-2442, 2018 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-30303294

RESUMEN

The first biologically relevant clickable probe related to the antitumor marine lipid jaspine B is reported. The concise synthetic route to both enantiomers relied on the supercritical fluid chromatography (SFC) enantiomeric resolution of racemic materials. The eutomeric dextrogyre derivative represents the first jaspine B analogue with enhanced cytotoxicity with IC50 down to 30 nm. These enantiomeric probes revealed a chiralitydependent cytoplasmic imaging of U2OS cancer cells by in situ click labeling.


Asunto(s)
Alquinos/química , Antineoplásicos/química , Colorantes Fluorescentes/química , Sondas Moleculares/química , Esfingosina/análogos & derivados , Alquinos/síntesis química , Alquinos/toxicidad , Antineoplásicos/síntesis química , Antineoplásicos/toxicidad , Línea Celular Tumoral , Química Clic , Colorantes Fluorescentes/síntesis química , Colorantes Fluorescentes/toxicidad , Humanos , Sondas Moleculares/síntesis química , Sondas Moleculares/toxicidad , Esfingosina/síntesis química , Esfingosina/toxicidad , Estereoisomerismo
15.
Nat Struct Mol Biol ; 25(10): 971-980, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30291363

RESUMEN

The Ku70-Ku80 (Ku) heterodimer binds rapidly and tightly to the ends of DNA double-strand breaks and recruits factors of the non-homologous end-joining (NHEJ) repair pathway through molecular interactions that remain unclear. We have determined crystal structures of the Ku-binding motifs (KBM) of the NHEJ proteins APLF (A-KBM) and XLF (X-KBM) bound to a Ku-DNA complex. The two KBM motifs bind remote sites of the Ku80 α/ß domain. The X-KBM occupies an internal pocket formed by an unprecedented large outward rotation of the Ku80 α/ß domain. We observe independent recruitment of the APLF-interacting protein XRCC4 and of XLF to laser-irradiated sites via binding of A- and X-KBMs, respectively, to Ku80. Finally, we show that mutation of the X-KBM and A-KBM binding sites in Ku80 compromises both the efficiency and accuracy of end joining and cellular radiosensitivity. A- and X-KBMs may represent two initial anchor points to build the intricate interaction network required for NHEJ.


Asunto(s)
Reparación del ADN por Unión de Extremidades , Enzimas Reparadoras del ADN/química , ADN-(Sitio Apurínico o Apirimidínico) Liasa/química , Proteínas de Unión al ADN/química , Autoantígeno Ku/química , Proteínas de Unión a Poli-ADP-Ribosa/química , Secuencia Conservada , Cristalografía por Rayos X , Enzimas Reparadoras del ADN/metabolismo , Enzimas Reparadoras del ADN/fisiología , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , ADN-(Sitio Apurínico o Apirimidínico) Liasa/fisiología , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/fisiología , Humanos , Autoantígeno Ku/metabolismo , Autoantígeno Ku/fisiología , Modelos Moleculares , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/fisiología , Dominios Proteicos
16.
Mol Cancer Ther ; 16(10): 2166-2177, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28611105

RESUMEN

Poisons of topoisomerase II (TOP2) kill cancer cells by preventing religation of intermediate DNA breaks during the enzymatic process and thus by accumulating enzyme-drug-DNA complexes called TOP2 cleavage-complex (TOP2cc). F14512 is a highly cytotoxic polyamine-vectorized TOP2 inhibitor derived from etoposide and currently in clinical trials. It was shown in vitro that F14512 has acquired DNA-binding properties and that the stability of TOP2cc was strongly increased. Paradoxically, at equitoxic concentrations in cells, F14512 induced less DNA breaks than etoposide. Here, we directly compared etoposide and F14512 for their rates of TOP2cc production and resolution in human cells. We report that targeting of TOP2α and not TOP2ß impacts cell killing by F14512, contrary to etoposide that kills cells through targeting both isoforms. Then, we show that despite being more cytotoxic, F14512 is less efficient than etoposide at producing TOP2α cleavage-complex (TOP2αcc) in cells. Finally, we report that compared with TOP2αcc mediated by etoposide, those generated by F14512 persist longer in the genome, are not dependent on TDP2 for cleaning break ends from TOP2α, are channeled to a larger extent to resection-based repair processes relying on CtIP and BRCA1 and promote RAD51 recruitment to damaged chromatin. In addition to the addressing of F14512 to the polyamine transport system, the properties uncovered here would be particularly valuable for a therapeutic usage of this new anticancer compound. More generally, the concept of increasing drug cytotoxicity by switching the repair mode of the induced DNA lesions via addition of a DNA-binding moiety deserves further developments. Mol Cancer Ther; 16(10); 2166-77. ©2017 AACR.


Asunto(s)
Roturas del ADN de Doble Cadena/efectos de los fármacos , ADN-Topoisomerasas de Tipo II/genética , Neoplasias/tratamiento farmacológico , Inhibidores de Topoisomerasa II/administración & dosificación , Apoptosis/efectos de los fármacos , Proteína BRCA1/genética , Cromatina/genética , Vectores Genéticos/efectos de los fármacos , Humanos , Neoplasias/genética , Neoplasias/patología , Podofilotoxina/administración & dosificación , Podofilotoxina/análogos & derivados , Poliaminas/administración & dosificación , Recombinasa Rad51/genética
17.
Nat Commun ; 8: 15917, 2017 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-28607502

RESUMEN

This corrects the article DOI: 10.1038/ncomms12889.

18.
Nat Commun ; 7: 12889, 2016 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-27641979

RESUMEN

Repair of single-ended DNA double-strand breaks (seDSBs) by homologous recombination (HR) requires the generation of a 3' single-strand DNA overhang by exonuclease activities in a process called DNA resection. However, it is anticipated that the highly abundant DNA end-binding protein Ku sequesters seDSBs and shields them from exonuclease activities. Despite pioneering works in yeast, it is unclear how mammalian cells counteract Ku at seDSBs to allow HR to proceed. Here we show that in human cells, ATM-dependent phosphorylation of CtIP and the epistatic and coordinated actions of MRE11 and CtIP nuclease activities are required to limit the stable loading of Ku on seDSBs. We also provide evidence for a hitherto unsuspected additional mechanism that contributes to prevent Ku accumulation at seDSBs, acting downstream of MRE11 endonuclease activity and in parallel with MRE11 exonuclease activity. Finally, we show that Ku persistence at seDSBs compromises Rad51 focus assembly but not DNA resection.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas Portadoras/metabolismo , Roturas del ADN de Doble Cadena , Autoantígeno Ku/metabolismo , Proteína Homóloga de MRE11/metabolismo , Proteínas Nucleares/metabolismo , Línea Celular Tumoral , Reparación del ADN , Endodesoxirribonucleasas , Humanos , Fosforilación , Recombinasa Rad51/metabolismo
19.
Oncotarget ; 7(34): 54430-54444, 2016 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-27303920

RESUMEN

Ionizing radiation (IR) induces highly cytotoxic double-strand breaks (DSBs) and also clustered oxidized bases in mammalian genomes. Base excision repair (BER) of bi-stranded oxidized bases could generate additional DSBs as repair intermediates in the vicinity of direct DSBs, leading to loss of DNA fragments. This could be avoided if DSB repair via DNA-PK-mediated nonhomologous end joining (NHEJ) precedes BER initiated by NEIL1 and other DNA glycosylases (DGs). Here we show that DNA-PK subunit Ku inhibits DGs via direct interaction. The scaffold attachment factor (SAF)-A, (also called hnRNP-U), phosphorylated at Ser59 by DNA-PK early after IR treatment, is linked to transient release of chromatin-bound NEIL1, thus preventing BER. SAF-A is subsequently dephosphorylated. Ku inhibition of DGs in vitro is relieved by unphosphorylated SAF-A, but not by the phosphomimetic Asp59 mutant. We thus propose that SAF-A, in concert with Ku, temporally regulates base damage repair in irradiated cell genome.


Asunto(s)
Reparación del ADN , Ribonucleoproteína Heterogénea-Nuclear Grupo U/fisiología , Autoantígeno Ku/fisiología , Traumatismos por Radiación/etiología , Roturas del ADN de Doble Cadena , ADN Glicosilasas/fisiología , Enzimas Reparadoras del ADN/fisiología , ADN-(Sitio Apurínico o Apirimidínico) Liasa/fisiología , Proteína Quinasa Activada por ADN/fisiología , Proteínas de Unión al ADN/fisiología , Células HEK293 , Humanos , Fosforilación , Tolerancia a Radiación
20.
Sci Rep ; 6: 22878, 2016 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-26964677

RESUMEN

The association of DNA Ligase IV (Lig4) with XRCC4 is essential for repair of DNA double-strand breaks (DSBs) by Non-homologous end-joining (NHEJ) in humans. DSBs cytotoxicity is largely exploited in anticancer therapy. Thus, NHEJ is an attractive target for strategies aimed at increasing the sensitivity of tumors to clastogenic anticancer treatments. However the high affinity of the XRCC4/Lig4 interaction and the extended protein-protein interface make drug screening on this target particularly challenging. Here, we conducted a pioneering study aimed at interfering with XRCC4/Lig4 assembly. By Molecular Dynamics simulation using the crystal structure of the complex, we first delineated the Lig4 clamp domain as a limited suitable target. Then, we performed in silico screening of ~95,000 filtered molecules on this Lig4 subdomain. Hits were evaluated by Differential Scanning Fluorimetry, Saturation Transfer Difference-NMR spectroscopy and interaction assays with purified recombinant proteins. In this way we identified the first molecule able to prevent Lig4 binding to XRCC4 in vitro. This compound has a unique tripartite interaction with the Lig4 clamp domain that suggests a starting chemotype for rational design of analogous molecules with improved affinity.


Asunto(s)
ADN Ligasa (ATP)/química , Proteínas de Unión al ADN/química , ADN/química , Modelos Moleculares , Sitios de Unión , ADN/metabolismo , Roturas del ADN de Doble Cadena , ADN Ligasa (ATP)/metabolismo , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Humanos , Ligandos , Conformación Molecular , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Reproducibilidad de los Resultados , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA