Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Front Chem ; 11: 1288681, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38025072

RESUMEN

The combination of semiconductors and redox active molecules for light-driven energy storage systems has emerged as a powerful solution for the exploitation of solar batteries. On account of this, transparent conductive oxide (TCO) nanocrystals (NCs) demonstrated to be interesting materials, thanks to the photo-induced charge accumulation enabling light harvesting and storage. The charge transfer process after light absorption, at the base of the proper use of these semiconductors, is a key step, often resulting in non-reversible transformations of the chemicals involved. However, if considering the photocharging through TCO NCs not only as a charge provider for the system but potentially as part of the storage role, the reversible transformation of the redox compound represents a crucial aspect. In this paper, we explore the possible interaction of indium tin oxide (ITO) NCs and typical redox mediators commonly employed in catalytic applications with a twofold scope of enhancing or supporting the light-induced charge accumulation on the metal oxide NC side and controlling the reversibility of the whole process. The work presented focuses on the effect of the redox properties on the doped metal oxide response, both from the stability point of view and the photodoping performance, by monitoring the changes in the optical behavior of ITO/redox hybrid systems upon ultraviolet illumination.

2.
Nanoscale ; 15(42): 17138-17146, 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37853946

RESUMEN

Doped metal oxide nanocrystals are emerging as versatile multi-functional materials with the potential to address several limitations of the current light-driven energy storage technology thanks to their unique ability to accumulate a large number of free electrons upon UV light exposure. The combination of these nanocrystals with a properly designed hole collector could lead to steady-state electron and hole accumulation, thus disclosing the possibility for light-driven energy storage in a single set of nanomaterials. In this framework, it is important to understand the role of the hole collector during UV light exposure. Here we show, via optical absorbance measurements under UV light, that well-defined graphene quantum dots with electron-donating character can act as hole acceptors and improve the stability of the photo-generated electrons in Sn-doped In2O3 nanocrystals. The results of this study offer new insight into the implementation of photo-charged storage devices based on hybrid organic/inorganic nanostructures.

3.
Nanoscale Adv ; 3(23): 6628-6634, 2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34913027

RESUMEN

Metal oxide nanocrystals are emerging as an extremely versatile material for addressing many of the current challenging demands of energy-conversion technology. Being able to exploit their full potential is not only an advantage but also a scientific and economic ambition for a more sustainable energy development. In this direction, the photodoping of metal oxide nanocrystals is a very notable process that allows accumulating multiple charge carriers per nanocrystal after light absorption. The reactivity of the photodoped electrons is currently the subject of an intense study. In this context, the possibility to extract efficiently the stored electrons could be beneficial for numerous processes, from photoconversion and sunlight energy storage to photocatalysis and photoelectrochemistry. In this work we provide, via oxidative titration and optical spectroscopy, evidence for multi-electron transfer processes from photodoped Sn : In2O3 nanocrystals to a widely employed organic electron acceptor (F4TCNQ). The results of this study disclose the potential of photodoped electrons to drive chemical reactions involving more than one electron.

4.
Nano Lett ; 21(14): 6211-6219, 2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34260252

RESUMEN

Controlled insertion of electronic states within the band gap of semiconductor nanocrystals (NCs) is a powerful tool for tuning their physical properties. One compelling example is II-VI NCs incorporating heterovalent coinage metals in which hole capture produces acceptor-bound excitons. To date, the opposite donor-bound exciton scheme has not been realized because of the unavailability of suitable donor dopants. Here, we produce a model system for donor-bound excitons in CdSeS NCs engineered with sulfur vacancies (VS) that introduce a donor state below the conduction band (CB), resulting in long-lived intragap luminescence. VS-localized electrons are almost unaffected by trapping, and suppression of thermal quenching boosts the emission efficiency to 85%. Magneto-optical measurements indicate that the VS are not magnetically coupled to the NC bands and that the polarization properties are determined by the spin of the valence-band photohole, whose spin flip is massively slowed down due to suppressed exchange interaction with the donor-localized electron.

5.
Nanoscale ; 13(19): 8773-8783, 2021 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-33959732

RESUMEN

The growing demand for self-powered devices has led to the study of novel energy storage solutions that exploit green energies whilst ensuring self-sufficiency. In this context, doped metal oxide nanocrystals (MO NCs) are interesting nanosized candidates with the potential to unify solar energy conversion and storage into one set of materials. In this review, we aim to present recent and important developments of doped MO NCs for light-driven multi-charge accumulation (i.e., photodoping) and solar energy storage. We will discuss the general concept of photodoping, the spectroscopic and theoretical tools to determine the charging process, together with unresolved open questions. We conclude the review by highlighting possible device architectures based on doped MO NCs that are expected to considerably impact the field of energy storage by combining in a unique way the conversion and storage of solar power and opening the path towards competitive and novel light-driven energy storage solutions.

6.
Nano Lett ; 19(2): 1307-1317, 2019 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-30663314

RESUMEN

"Charge engineering" of semiconductor nanocrystals (NCs) through so-called electronic impurity doping is a long-standing challenge in colloidal chemistry and holds promise for ground-breaking advancements in many optoelectronic, photonic, and spin-based nanotechnologies. To date, our knowledge is limited to a few paradigmatic studies on a small number of model compounds and doping conditions, with important electronic dopants still unexplored in nanoscale systems. Equally importantly, fine-tuning of charge engineered NCs is hampered by the statistical limitations of traditional approaches. The resulting intrinsic doping inhomogeneity restricts fundamental studies to statistically averaged behaviors and complicates the realization of advanced device concepts based on their advantageous functionalities. Here we aim to address these issues by realizing the first example of II-VI NCs electronically doped with an exact number of heterovalent gold atoms, a known p-type acceptor impurity in bulk chalcogenides. Single-dopant accuracy across entire NC ensembles is obtained through a novel non-injection synthesis employing ligand-exchanged gold clusters as "quantized" dopant sources to seed the nucleation of CdSe NCs in organic media. Structural, spectroscopic, and magneto-optical investigations trace a comprehensive picture of the physical processes resulting from the exact doping level of the NCs. Gold atoms, doped here for the first time into II-VI NCs, are found to incorporate as nonmagnetic Au+ species activating intense size-tunable intragap photoluminescence and artificially offsetting the hole occupancy of valence band states. Fundamentally, the transient conversion of Au+ to paramagnetic Au2+ (5d9 configuration) under optical excitation results in strong photoinduced magnetism and diluted magnetic semiconductor behavior revealing the contribution of individual paramagnetic impurities to the macroscopic magnetism of the NCs. Altogether, our results demonstrate a new chemical approach toward NCs with physical functionalities tailored to the single impurity level and offer a versatile platform for future investigations and device exploitation of individual and collective impurity processes in quantum confined structures.

7.
Nat Nanotechnol ; 13(2): 145-151, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29255289

RESUMEN

Electronic doping of colloidal semiconductor nanostructures holds promise for future device concepts in optoelectronic and spin-based technologies. Ag+ is an emerging electronic dopant in III-V and II-VI nanostructures, introducing intragap electronic states optically coupled to the host conduction band. With its full 4d shell Ag+ is nonmagnetic, and the dopant-related luminescence is ascribed to decay of the conduction-band electron following transfer of the photoexcited hole to Ag+. This optical activation process and the associated modification of the electronic configuration of Ag+ remain unclear. Here, we trace a comprehensive picture of the excitonic process in Ag-doped CdSe nanocrystals and demonstrate that, in contrast to expectations, capture of the photohole leads to conversion of Ag+ to paramagnetic Ag2+. The process of exciton recombination is thus inextricably tied to photoinduced magnetism. Accordingly, we observe strong optically activated magnetism and diluted magnetic semiconductor behaviour, demonstrating that optically switchable magnetic nanomaterials can be obtained by exploiting excitonic processes involving nonmagnetic impurities.

8.
ACS Nano ; 10(7): 6877-87, 2016 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-27276033

RESUMEN

Two-color emitting colloidal semiconductor nanocrystals (NCs) are of interest for applications in multimodal imaging, sensing, lighting, and integrated photonics. Dual color emission from core- and shell-related optical transitions has been recently obtained using so-called dot-in-bulk (DiB) CdSe/CdS NCs comprising a quantum-confined CdSe core embedded into an ultrathick (∼7-9 nm) CdS shell. The physical mechanism underlying this behavior is still under debate. While a large shell volume appears to be a necessary condition for dual emission, comparison between various types of thick-shell CdSe/CdS NCs indicates a critical role of the interface "sharpness" and the presence of potential barriers. To elucidate the effect of the interface morphology on the dual emission, we perform side-by-side studies of CdSe/CdS DiB-NCs with nominally identical core and shell dimensions but different structural properties of the core/shell interface arising from the crystal structure of the starting CdSe cores (zincblende vs wurtzite). While both structures exhibit dual emission under comparable pump intensities, NCs with a zincblende core show a faster growth of shell luminescence with excitation fluence and a more readily realized regime of amplified spontaneous emission (ASE) even under "slow" nanosecond excitation. These distinctions can be linked to the structure of the core/shell interface: NCs grown from the zincblende cores contain a ∼3.5 nm thick zincblende CdS interlayer, which separates the core from the wurtzite CdS shell and creates a potential barrier for photoexcited shell holes inhibiting their relaxation into the core. This helps maintain a higher population of shell states and simplifies the realization of dual emission and ASE involving shell-based optical transitions.

9.
Nanoscale ; 8(7): 4217-26, 2016 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-26837955

RESUMEN

Semiconducting nanocrystals optically active in the infrared region of the electromagnetic spectrum enable exciting avenues in fundamental research and novel applications compatible with the infrared transparency windows of biosystems such as chemical and biological optical sensing, including nanoscale thermometry. In this context, quantum dots (QDs) with double color emission may represent ultra-accurate and self-calibrating nanosystems. We present the synthesis of giant core/shell/shell asymmetric QDs having a PbS/CdS zinc blende (Zb)/CdS wurtzite (Wz) structure with double color emission close to the near-infrared (NIR) region. We show that the double emission depends on the excitation condition and analyze the electron-hole distribution responsible for the independent and simultaneous radiative exciton recombination in the PbS core and in the CdS Wz shell, respectively. These results highlight the importance of the driving force leading to preferential crystal growth in asymmetric QDs, and provide a pathway for the rational control of the synthesis of double color emitting giant QDs, leading to the effective exploitation of visible/NIR transparency windows.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA