Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Carbohydr Polym ; 343: 122441, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39174122

RESUMEN

Plant-derived biomaterials have great application prospects in solving environmental pollution and sustainable resource utilization, but the insufficient mechanical strength and lack of functional responsiveness often limit their further development. Inspired by natural small molecules functionalization, a vacuum-assisted filtration nanofibrillated cellulose (NFC)-based film with excellent antibacterial properties, mechanical strength, and electrothermal/photothermal dual-responsiveness was fabricated. As a natural bioactive molecule, antibacterial cinnamaldehyde (CA) is grafted onto tannic acid (TA) rich in pyrogallols via a small molecule self-assembly strategy, and then co-assembled with zinc acetate (ZA) through ion crosslinking to synthesize the functional TACA@ZA nanospheres. After incorporating the MXene and TACA@ZA, an inorganic-organic 3D network system was established in the NFC matrix through dynamic intermolecular hydrogen bonding and strong ionic cross-linking. The mechanical strength and toughness of hybrid composites are remarkably improved by 83.6 % and 418.9 %, respectively. Due to the synergistic effects of MXene and TACA@ZA, the designed NFC-based film also shows significantly enhanced antibacterial activity, UV-blocking ability, as well as photothermal and electrothermal performance. This bioinspired small molecule functionalization strategy opens an innovative design concept for the fabrication of multirole NFC-based biomaterials, which has great application prospects in the commercial fields of multifunctional adhesives, electronic devices, UV shielding coatings, and antibacterial materials.

2.
Transl Androl Urol ; 13(5): 792-801, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38855592

RESUMEN

Background: An accurate and noninvasive method to determine the preoperative clear-cell renal cell carcinoma (ccRCC) pathological grade is of great significance for surgical program selection and prognosis assessment. Previous studies have shown that diffusion-weighted imaging (DWI) has moderate value in grading ccRCC. But DWI cannot reflect the diffusion of tissue accurately because it is calculated using a monoexponential model. Intravoxel incoherent motion (IVIM) is the biexponential model of DWI. Only a few studies have examined the value of IVIM in grading ccRCC yet with inconsistent results. This study aimed to compare the value of DWI and IVIM in grading ccRCC. Methods: In this study, 96 patients with pathologically confirmed ccRCC were evaluated by DWI and IVIM on a 3-T scanner. According to the World Health Organization/International Society of Urological Pathology (WHO/ISUP) classification system, these patients were divided into two groups: low-grade (grade I and II) and high-grade (grade III and IV) ccRCC. The apparent diffusion coefficient (ADC), true diffusion coefficient (D), pseudodiffusion coefficient (D*), and perfusion fraction of pseudodiffusion (f) values were calculated. The Mann-Whitney test, receiver-operating characteristic (ROC) analysis, and the Delong test were used for statistical evaluations. Results: (I) According to the WHO/ISUP nuclear grading system, 96 patients were divided into low-grade (grade I and II, 45 patients) and high-grade (grade III and IV, 51 patients) groups. (II) Compared with patients of low-grade ccRCC, the ADC and D values of those with high-grade ccRCC decreased while the D* and f values increased (P<0.05). (III) The cutoff value of the ADC, D, D*, and f in distinguishing low-grade from high-grade ccRCC was 1.50×10-3 mm2/s, 1.12×10-3 mm2/s, and 33.19×10-3 mm2/s, 0.31, respectively; the area under the curve (AUC) for the ADC, D, D*, and f values was 0.871, 0.942, 0.621, and 0.894, respectively, with the AUC of the D value being the highest; the sensitivity for the ADC, D, D*, and f values was 94.12%, 92.16%, 47.06%, and 92.16%, respectively; and the specificity for the ADC, D, D*, and f values was 66.67%, 91.11%, 77.78%, and 73.33%, respectively. (IV) Based on the Delong test, AUCD was significantly higher than AUCADC (P=0.02) and AUCD* (P<0.001), but there was no significant difference between AUCD and AUC f (P=0.18). Conclusions: Compared with the monoexponential model DWI, the biexponential model IVIM was more accurate in grading ccRCC.

3.
Front Genet ; 15: 1376971, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38846957

RESUMEN

Background: Pre-eclampsia is a pregnancy-related disorder characterized by hypertension and proteinuria, severely affecting the health and quality of life of patients. However, the molecular mechanism of macrophages in pre-eclampsia is not well understood. Methods: In this study, the key biomarkers during the development of pre-eclampsia were identified using bioinformatics analysis. The GSE75010 and GSE74341 datasets from the GEO database were obtained and merged for differential analysis. A weighted gene co-expression network analysis (WGCNA) was constructed based on macrophage content, and machine learning methods were employed to identify key genes. Immunoinfiltration analysis completed by the CIBERSORT method, R package "ClusterProfiler" to explore functional enrichment of these intersection genes, and potential drug predictions were conducted using the CMap database. Lastly, independent analysis of protein levels, localization, and quantitative analysis was performed on placental tissues collected from both preeclampsia patients and healthy control groups. Results: We identified 70 differentially expressed NETs genes and found 367 macrophage-related genes through WGCNA analysis. Machine learning identified three key genes: FNBP1L, NMUR1, and PP14571. These three key genes were significantly associated with immune cell content and enriched in multiple signaling pathways. Specifically, these genes were upregulated in PE patients. These findings establish the expression patterns of three key genes associated with M2 macrophage infiltration, providing potential targets for understanding the pathogenesis and treatment of PE. Additionally, CMap results suggested four potential drugs, including Ttnpb, Doxorubicin, Tyrphostin AG 825, and Tanespimycin, which may have the potential to reverse pre-eclampsia. Conclusion: Studying the expression levels of three key genes in pre-eclampsia provides valuable insights into the prevention and treatment of this condition. We propose that these genes play a crucial role in regulating the maternal-fetal immune microenvironment in PE patients, and the pathways associated with these genes offer potential avenues for exploring the molecular mechanisms underlying preeclampsia and identifying therapeutic targets. Additionally, by utilizing the Connectivity Map database, we identified drug targets like Ttnpb, Doxorubicin, Tyrphostin AG 825, and Tanespimycin as potential clinical treatments for preeclampsia.

4.
World J Clin Cases ; 12(12): 2099-2108, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38680271

RESUMEN

BACKGROUND: The clinical incidence of spinal infection is gradually increasing, and its onset is insidious, easily leading to missed diagnosis and misdiagnosis, which may lead to serious complications such as nervous system dysfunction, spinal instability and/or deformity, and cause a huge burden on society and families. Early identification of the causative agent and precision medicine will greatly reduce the suffering of patients. At present, the main pathogenic bacteria that cause spinal infection are Staphylococcus aureus, Streptococcus, Pneumococcus, Escherichia coli, and Klebsiella. There are no reports of spinal infection caused by Pseudomonas fluorescens. CASE SUMMARY: We report a 32-year-old female patient with spinal infection. She presented with flank pain, initially thought to be bone metastases or bone tuberculosis, and had a family background of tumors. Her clinical features and changes in imaging and laboratory tests led to the suspicion of thoracic spine infection. Histopathology of the lesion showed inflammation, tissue culture of the lesion was negative several times, and the possible pathogen - Pseudomonas fluorescens was found after gene sequencing of the lesion. The patient recovered completely after a full course of antibiotic treatment. CONCLUSION: This report increases the range of pathogens involved in spinal infections, highlights the unique advantages of gene sequencing technology in difficult-to-diagnose diseases, and validates conservative treatment with a full course of antibiotics for spinal infections without complications.

5.
J Control Release ; 370: 339-353, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38685383

RESUMEN

Chronic skin wounds are a serious complication of diabetes with a high incidence rate, which can lead to disability or even death. Previous studies have shown that mesenchymal stem cells derived extracellular vesicles (EVs) have beneficial effects on wound healing. However, the human foreskin mesenchymal stem cell (FSMSCs)-derived extracellular vesicle (FM-EV) has not yet been isolated and characterized. Furthermore, the limited supply and short lifespan of EVs also hinder their practical use. In this study, we developed an injectable dual-physical cross-linking hydrogel (PSiW) with self-healing, adhesive, and antibacterial properties, using polyvinylpyrrolidone and silicotungstic acid to load FM-EV. The EVs were evenly distributed in the hydrogel and continuously released. In vivo and vitro tests demonstrated that the synergistic effect of EVs and hydrogel could significantly promote the repair of diabetic wounds by regulating macrophage polarization, promoting angiogenesis, and improving the microenvironment. Overall, the obtained EVs-loaded hydrogels developed in this work exhibited promising applicability for the repair of chronic skin wounds in diabetes patients.


Asunto(s)
Vesículas Extracelulares , Prepucio , Hidrogeles , Células Madre Mesenquimatosas , Cicatrización de Heridas , Hidrogeles/administración & dosificación , Hidrogeles/química , Humanos , Cicatrización de Heridas/efectos de los fármacos , Animales , Masculino , Prepucio/citología , Piel/lesiones , Piel/metabolismo , Diabetes Mellitus Experimental/complicaciones , Ratones , Antibacterianos/administración & dosificación , Antibacterianos/farmacología , Inyecciones
6.
Mol Pharm ; 21(5): 2340-2350, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38546166

RESUMEN

Uveal melanoma (UM) is the most common primary ocular malignancy in adults and has high mortality. Recurrence, metastasis, and therapeutic resistance are frequently observed in UM, but no beneficial systemic therapy is available, presenting an urgent need for developing effective therapeutic drugs. Verteporfin (VP) is a photosensitizer and a Yes-Associated Protein (YAP) inhibitor that has been used in clinical practice. However, VP's lack of tumor targetability, poor biocompatibility, and relatively low treatment efficacy hamper its application in UM management. Herein, we developed a biocompatible CD44-targeting hyaluronic acid nanoparticle (HANP) carrying VP (HANP/VP) to improve UM treatment efficacy. We found that HANP/VP showed a stronger inhibitory effect on cell proliferation than that of free VP in UM cells. Systemic delivery of HANP/VP led to targeted accumulation in the UM-tumor-bearing mouse model. Notably, HANP/VP mediated photodynamic therapy (PDT) significantly inhibited UM tumor growth after laser irradiation compared with no treatment or free VP treatment. Consistently, in HANP/VP treated tumors after laser irradiation, the tumor proliferation and YAP expression level were decreased, while the apoptotic tumor cell and CD8+ immune cell levels were elevated, contributing to effective tumor growth inhibition. Overall, the results of this preclinical study showed that HANP/VP is an effective nanomedicine for tumor treatment through PDT and inhibition of YAP in the UM tumor mouse model. Combining phototherapy and molecular-targeted therapy offers a promising approach for aggressive UM management.


Asunto(s)
Proliferación Celular , Ácido Hialurónico , Melanoma , Nanopartículas , Fotoquimioterapia , Fármacos Fotosensibilizantes , Neoplasias de la Úvea , Verteporfina , Verteporfina/farmacología , Verteporfina/uso terapéutico , Animales , Fotoquimioterapia/métodos , Neoplasias de la Úvea/tratamiento farmacológico , Neoplasias de la Úvea/patología , Ratones , Melanoma/tratamiento farmacológico , Melanoma/patología , Humanos , Fármacos Fotosensibilizantes/administración & dosificación , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Fármacos Fotosensibilizantes/química , Línea Celular Tumoral , Nanopartículas/química , Proliferación Celular/efectos de los fármacos , Ácido Hialurónico/química , Receptores de Hialuranos/metabolismo , Apoptosis/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Proteínas Señalizadoras YAP , Ratones Desnudos , Terapia Molecular Dirigida/métodos , Ratones Endogámicos BALB C , Femenino
7.
Carbohydr Polym ; 333: 121971, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38494225

RESUMEN

The development of a biomass adhesive as a substitute for petroleum-derived adhesives has been considered a viable option. However, achieving both superior bonding strength and toughness in biomass adhesives remains a significant challenge. Inspired by the human skeletal muscles structure, this study reveals a promising supramolecular structure using tannin acid (TA) functionalized poly-ß-cyclodextrin (PCD) (TA@PCD) as elastic tissues and chitin nanocrystals (ChNCs) as green reinforcements to strengthen the soybean meal (SM) adhesive crosslinking network. TA@PCD acts as a dynamic crosslinker that facilitates reversible host-guest interactions, hydrogen bonds, and electrostatic interactions between adjacent stiff ChNCs and SM matrix, resulting in satisfactory strength and toughness. The resulting SM/TA@PCD/ChNCs-2 adhesive has demonstrated satisfactory wet and dry shear strength (1.25 MPa and 2.57 MPa, respectively), toughness (0.69 J), and long-term solvents resistance (80 d). Furthermore, the adhesive can exhibit desirable antimildew characteristics owing to the phenol hydroxyl groups of TA and amino groups of ChNCs. This work showcases an effective supramolecular chemistry strategy for fabricating high-performance biomass adhesives with great potential for practical applications.


Asunto(s)
Quitina , Nanopartículas , Humanos , Nutrientes , Biomasa , Glycine max , Poli A , Adhesivos
8.
Biochem Mol Biol Educ ; 52(3): 291-298, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38189805

RESUMEN

The laboratory practice "Primary culture and directional differentiation of rat bone marrow mesenchymal stem cells (BMSCs)" is part of a required course for sophomore medical students at Tongji university, which has been conducted since 2012. Blended learning has been widely applied in medical courses. Based on a student-centered teaching philosophy, we reconstructed a comprehensive stem cell laboratory module with blended learning in 2021, aiming to facilitate students in enhancing their understanding of the multi-lineage differentiation potential of stem cells and improve their experimental skills, self-directed learning ability, and innovative thinking. First, we constructed in-depth online study resources, including videos demonstrating laboratory procedures, a PowerPoint slide deck, and published literature on student self-learning before class. In class, students performed a primary culture of BMSCs, freely chose among adipogenic, osteogenic, or chondrogenic differentiation, and used cytochemical or immunofluorescence staining for identification. After class, the extracurricular part involved performing quantitative polymerase chain reaction to examine the expression of multi-lineage differentiation marker genes, which was designed as an elective. After 2 years of practice, positive feedback was obtained from both students and faculty members who achieved, the learning goal as expected. The reconstructed stem cell laboratory module provides comprehensive practice opportunities for students. Students have a better understanding of BMSC at the molecular, cellular, and functional levels and have improved their experimental skills, which forms a basis for scientific research for medical students. Introducing blended learning into other medical laboratory practices thus seems valuable.


Asunto(s)
Diferenciación Celular , Células Madre Mesenquimatosas , Estudiantes de Medicina , Humanos , Ratas , Animales , Células Madre Mesenquimatosas/citología , Universidades , Aprendizaje , Laboratorios , Educación de Pregrado en Medicina/métodos
9.
Asian J Androl ; 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37695244

RESUMEN

The sperm DNA fragmentation index (DFI) is a metric used to assess DNA fragmentation within sperm. During in vitro fertilization-embryo transfer (IVF-ET), high sperm DFI can lead to a low fertilization rate, poor embryo development, early miscarriage, etc. A kinase anchoring protein (AKAP) is a scaffold protein that can bind protein kinase A (PKA) to subcellular sites of specific substrates and protects the biophosphorylation reaction. Sperm protein antigen 17 (SPA17) can also bind to AKAP. This study intends to explore the reason for the decreased fertilization rate observed in high sperm DFI (H-DFI) patients during IVF-ET. In addition, the study investigates the expression of AKAP, protein kinase A regulatory subunit (PKARII), and SPA17 between H-DFI and low sperm DFI (L-DFI) patients. SPA17 at the transcriptional level is abnormal, the translational level increases in H-DFI patients, and the expression of AKAP4/PKARII protein decreases. H2O2 has been used to simulate oxidative stress damage to spermatozoa during the formation of sperm DFI. It indicates that H2O2 increases the expression of sperm SPA17 protein and suppresses AKAP4/PKARII protein expression. These processes inhibit sperm capacitation and reduce acrosomal reactions. Embryo culture data and IVF outcomes have been documented. The H-DFI group has a lower fertilization rate. Therefore, the results indicate that the possible causes for the decreased fertilization rate in the H-DFI patients have included loss of sperm AKAP4/PKARII proteins, blocked sperm capacitation, and reduced occurrence of acrosome reaction.

10.
Medicine (Baltimore) ; 102(34): e34735, 2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37653781

RESUMEN

RATIONALE: Many factors can contribute to the development of macular injury, which results in vision loss as a result of a disease. Heredity, age, underlying eye illness, internal eye surgery, or eye trauma can all cause it. A safer alternative to current therapies for macular degeneration is urgently needed since they all induce ocular irritation and postoperative recurrence as well as a host of other adverse effects. PATIENT CONCERNS: A 12-year-old girl was the patient. A laser pen burnt her right eye. There was a spot and a shadow in the middle of her right eye's visual field. DIAGNOSES: Macular degeneration. INTERVENTIONS: Given the patient's age, we opted out of medicine and instead used acupuncture as a symptomatic treatment. OUTCOMES: Two months after therapy concluded, optical coherence tomography result report indicate that the macula region of the right eye is better than it was previously. The corrected visual acuity of the right eye recovered from 0.25 to 1.0, and the clinical accompanying symptoms of the right eye disappeared. LESSONS: No additional medication or surgical procedure was employed in this instance. We treated the macular damage with acupuncture, which relieved the patient's clinical symptoms and had no adverse effects. This demonstrates that acupuncture may be beneficial in treating ophthalmopathy in this direction.


Asunto(s)
Terapia por Acupuntura , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Degeneración Macular , Medicina , Humanos , Femenino , Niño , Ojo
11.
Carbohydr Polym ; 319: 121093, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37567684

RESUMEN

Developing multifunctional adhesives with exceptional cold-pressing strength, water resistance, toughness, and mildew resistance remains challenging. Herein, inspired by oysters, a multifunctional organic-inorganic hybrid soybean meal (SM)-based adhesive was fabricated by incorporating amino-modified carbon dots functionalized silica nanoparticles (CDs@SiO2) and dialdehyde chitosan (DCS) into SM matrix. DCS effectively enhanced the interface interactions of organic-inorganic phases and the rigid nanofillers CDs@SiO2 uniformly dispersed in the SM matrix, which provided energy dissipation to improve the adhesive's toughness. Owing to the stiff skeleton structure and enhanced crosslinking density, the crosslinker-modified SM (MSM)/DCS/CDs@SiO2-2 wood adhesive exhibited outstanding cold-pressing strength (0.74 MPa), wet shear strength (1.36 MPa), and long-term water resistance (49 d). Additionally, the resultant adhesive showed superior antimildew and antibacterial properties benefiting from the introduction of DCS. Intriguingly, the fluorescent properties endowed by carbon dots further broadened the application of adhesives for realizing security testing. This study opens a new pathway for the synthesis of multifunctional biomass adhesives in industrial and household applications.


Asunto(s)
Quitosano , Ostreidae , Animales , Adhesivos/química , Proteínas de Soja/química , Dióxido de Silicio , Agua , Glycine max
12.
Placenta ; 139: 159-171, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37406553

RESUMEN

INTRODUCTION: Fetal growth restriction (FGR) is a common complication of pregnancy. Lipid metabolism and distribution may contribute to the progression of FGR. However, the metabolism-related mechanisms of FGR remain unclear. The aim of this study was to identify metabolic profiles associated with FGR, as well as probable genes and signaling pathways. METHODS: Metabolomic profiles at the maternal-fetal interface (including the placenta, maternal and fetal serum) from pregnant women with (n = 35) and without (n = 35) FGR were analyzed by gas chromatography-mass spectrometry (GC-MS). Combined with differentially expressed genes (DEGs) from the GSE35574 dataset, analysis was performed for differential metabolites, and identified by the Metabo Analyst dataset. Finally, the pathology and screened DEGs were further identified. RESULTS: The results showed that fatty acids (FAs) accumulated in the placenta and decreased in fetal blood in FGR cases compared to controls. The linoleic acid metabolism was the focus of placental differential metabolites and genes enrichment analysis. In this pathway, phosphatidylcholine can interact with PLA2G2A and PLA2G4C, and 12(13)-EpOME can interact with CYP2J2. PLA2G2A and CYP2J2 were elevated, and PLA2G4C was decreased in the FGR placenta. DISCUSSION: In conclusion, accumulation of FAs in the placental ischemic environments, may involve linoleic acid metabolism, which may be regulated by PLA2G2A, CYP2J2, and PLA2G4C. This study may contribute to understanding the underlying metabolic and molecular mechanisms of FGR.


Asunto(s)
Retardo del Crecimiento Fetal , Placenta , Embarazo , Femenino , Humanos , Retardo del Crecimiento Fetal/patología , Placenta/metabolismo , Metabolismo de los Lípidos , Citocromo P-450 CYP2J2 , Ácidos Linoleicos/metabolismo
13.
Mater Horiz ; 10(8): 2980-2988, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37183590

RESUMEN

Developing underwater adhesives is important in many applications. Despite extensive progress, achieving strong, stable, and durable underwater adhesion via a simple and effective way is still challenging, mainly due to the conflict between the interfacial and bulk properties. Here, we report a unique bio-inspired strategy to facilely construct superior underwater adhesives with desirable interfacial and bulk properties. For adhesive design, a hydrophilic backbone is utilized to quickly absorb water for effective dehydration, and a novel amino acid-resembling functional block is developed to provide versatile molecular interactions for high interfacial adhesion. Moreover, the conjunction of these two components enables the generation of abundant covalent crosslinks for robust bulk cohesion. Such a rational design allows the adhesive to present a boosted underwater adhesion (3.92 MPa to glass), remarkable durability (maintaining high strength after one month), and good stability in various harsh environments (pH, salt, high temperature, and organic solvents). This strategy is generic, allowing the derivation of more similar adhesive designs easily and triggering new thinking for designing bio-inspired adhesives and beyond.

15.
Front Pharmacol ; 13: 1010640, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36249763

RESUMEN

Yi Shen Juan Bi Pill (YSJB) is a traditional Chinese medicine (TCM) formulation that has a therapeutic effect upon rheumatoid arthritis (RA), but how YSJB affects bone destruction in arthritis under postmenopausal conditions is not known. We evaluated the therapeutic role of YSJB in bone destruction in postmenopausal arthritis, We used collagen-induced arthritis (CIA) rats who had been ovariectomized (OVX) as models and explored the possible mechanism from the synovium and bone marrow (BM). Arthritis was generated after ovariectomy or sham surgery for 12 weeks. After 14 days of primary immunization, rats were administered YSJB or estradiol valerate (EV) for 28 days. YSJB could prevent bone destruction in the inflamed joints of rats in the OVX + CIA group. CIA promoted osteoclast differentiation significantly in the synovial membrane according to tartrate resistant acid phosphatase (TRACP) staining, and OVX tended to aggravate the inflammatory reaction of CIA rats according to hematoxylin-and-eosin staining. Immunohistochemistry revealed that the synovium did not have significant changes in erythropoietin-producing hepatocellular interactor (ephrin)B2 or erythropoietin-producing hepatocellular (eph) B4 expression after YSJB treatment, but YSJB treatment reduced nuclear factor of activated T cells (NFATc)1 expression. The BM of rats in the OVX + CIA exhibited remarkable increases in the number of osteoclasts and NFATc1 expression, as well as significantly reduced expression of ephrinB2 and ephB4 compared with the CIA group and sham group. YSJB treatment reduced NFATc1 expression significantly but also increased ephrinB2 expression in the BM markedly. These data suggest that YSJB exhibit a bone-protective effect, it may be a promising therapeutic strategy for alleviating bone destruction in arthritis under postmenopausal conditions, and one of the mechanisms is associated with the modulation of ephrinB2 signaling.

16.
Ann Transl Med ; 10(8): 474, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35571428

RESUMEN

Background: Under the background that diffusion kurtosis imaging (DKI) has become a research hotspot of central nervous system diseases, there are no studies with large sample size evaluating the value of DKI in diagnosing Parkinson's disease (PD). Moreover, the diagnostic efficacy of DKI in PD is not consistent. Therefore, the main purpose of this study is to use the method of meta-analysis, to summarize and evaluate the diagnostic efficacy of DKI in the identification of PD, and to explore the value of its clinical application. Methods: We use PICOS principles for project design. The included patients were PD patients, and the control group were healthy volunteers. We hope to use DKI to make a differential diagnosis between the two, and this study is a diagnostic test. We performed a literature search of English (PubMed, Embase, Cochrane Library, etc.) and Chinese (China knowledge Network, Wanfang Data Knowledge Service platform, China Science and Technology Journal Database, China Biomedical Literature Service system) databases for related literatures on the efficacy of DKI in the differential diagnosis of PD published before March 29, 2022. We used Revman 5.3 software to assess the quality of the literature, Meta-Disc 1.4 software for summarizing sensitivity (Sen), specificity (Spe), diagnostic odds ratios, and heterogeneity tests, and for subgrouping, and Stata 16.0 software for publication bias analysis. Results: Fourteen articles were included through the literature search. The 14 studies included 535 patients with PD and 486 patients without PD. Most of the included literature had good clinical applicability and relatively low risk. By merging statistics, the results obtained were as follows: Sen =0.78 [95% confidence interval (CI): 0.74-0.81], Spe =0.83 (95% CI: 0.79-0.86), and the area under the summary receiver operating characteristic (SROC) curve was 0.8870. Discussion: The results of the meta-analysis showed that magnetic resonance DKI has comparable diagnostic accuracy in the diagnosis of PD. However, this study also has limitations, and the use of different diagnostic gold standards in the included studies may have some impact on the case selection in the study.

17.
Front Plant Sci ; 13: 810905, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35242153

RESUMEN

Drought is one of the most severe environmental stressors that place major constraints on the growth of soybeans (Glycine max L.). Graphene oxide (GO) is a nanomaterial that can promote plant growth without toxic effects. In this study, the physiological and molecular responses to drought stress with GO treatment were examined. We discovered that the relative water content (RWC) of stems and leaves treated with GO was 127 and 128% higher than that of the WT plants, respectively. The root parameters in GO-treated soybeans were increased by 33, 38, 34, and 35% than WT plants in total root length, root surface area, root diameter, and root volume, respectively. The activities of superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and ascorbate peroxidase (APX) were also increased by 29, 57, 28, and 66%, respectively. However, the relative conductivity (REC), malondialdehyde (MDA), and hydrogen peroxide (H2O2) accumulation were remarkably decreased. Furthermore, the content of drought-related hormones JA, SA, and ABA in GO-treated soybeans increased by 32, 34, and 67% than WT plants, respectively. At the molecular level, the effects of GO treatment were manifested by relatively higher expression of four drought-related genes: GmP5CS, GmGOLS, GmDREB1, and GmNCED1. Taken together, our findings revealed that GO could directly increase plant defense enzymes, hormone content, and the expression of drought-related genes, thereby improving the soybean's ability to resist drought. These findings could provide new opportunities for improving drought tolerance in soybeans through effective soil water retention agents.

18.
Invest Ophthalmol Vis Sci ; 63(2): 21, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35142786

RESUMEN

Purpose: To determine the possible microbiome related to Vogt-Koyanagi-Harada (VKH) disease in comparison to patients with noninfectious anterior scleritis and healthy people. Methods: Fecal samples were extracted from 42 individuals, including 11 patients with active VKH, 11 healthy people, and 20 patients with noninfectious anterior scleritis. We amplified the V3 to V4 16S ribosomal DNA (rDNA) region to obtain the target sequence. Then, the target sequence was amplified by polymerase chain reaction. The obtained target sequences were sequenced by high-throughput 16S rDNA analysis. Results: At the genus level, there were three enriched (Stomatobaculum, Pseudomonas, Lachnoanaerobaculum) and two depleted (Gordonibacter, Slackia) microbes that were detected only in patients with VKH. There were 10 enriched and 12 depleted microbes that were observed in both patients with VKH disease and noninfectious anterior scleritis (P < 0.05). The interactions of these microbes were graphed. Tyzzerella and Eggerthella were the nodes of interaction between these microorganisms, which were regulated by both positive and negative aspects, but the expression level in patients with active VKH was upregulated. Conclusions: Special or nonspecial enrichment and decreased intestinal microbes were observed in patients with active VKH. The action mechanism of these microbes needs further study.


Asunto(s)
Actinobacteria/fisiología , Clostridiales/fisiología , Microbioma Gastrointestinal/fisiología , Pseudomonas/fisiología , Síndrome Uveomeningoencefálico/microbiología , Adulto , Estudios de Casos y Controles , ADN Bacteriano/genética , Disbiosis/microbiología , Heces/microbiología , Femenino , Técnicas de Genotipaje , Voluntarios Sanos , Humanos , Masculino , Persona de Mediana Edad , ARN Ribosómico 16S/genética , Escleritis/microbiología
19.
Plant Physiol Biochem ; 174: 51-62, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35144110

RESUMEN

Sea buckthorn, an important ecological and economical tree species, have remarkable drought and salt resistance. The plant-specific transcription factor TCPs play important roles in plant growth, development, and stress responses. However, in sea buckthorn, the molecular mechanism of TCP proteins and their involvement in drought stress are unknown. Here, we found that the expression of HrTCP20 was significantly up-regulated in sea buckthorn under drought stress. Overexpression of HrTCP20 in Arabidopsis thaliana showed that the superoxide dismutase (SOD), polyphenol oxidase (POD), and chlorophyll (SPAD) content was significantly increased by 1.37 and 1.35 times. However, the malondialdehyde (MDA) content decreased by 0.51 times. Our studies further confirmed that silencing HrTCP20 by virus-induced gene silencing (VIGS) led to a decrease in the content of defense enzymes, relative water content (RWC), and an increase of relative electrical conductivity (REC). Silencing HrTCP20 also caused the jasmonic acid (JA) content to decrease in the VIGS-treated tree. Interestingly, we found that JA accumulation content and the expression of HrLOX2, an essential enzyme for JA synthesis, was significantly inhibited in HrTCP20-silenced sea buckthorn under drought stress. Yeast two-hybrid analysis also showed that HrTCP20 is directly bound to HrLOX2. Taken together, the HrTCP20 transcription factor was a positive regulator in drought resistance of sea buckthorn. Further, our findings will provide comprehensive insights into the forest tree defence system of drought stress.


Asunto(s)
Hippophae , Ciclopentanos , Sequías , Hippophae/genética , Oxilipinas , Transducción de Señal
20.
ACS Appl Mater Interfaces ; 13(20): 24095-24105, 2021 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-34000184

RESUMEN

Herein, a new type of injectable carboxymethyl chitosan (CMCh) hydrogel wound dressing with self-healing properties is constructed. First, CMCh samples are homogeneously synthesized in alkali/urea aqueous solutions. Subsequently, trivalent metal ions of Fe3+ and Al3+ are introduced to form coordination bonds with CMCh, leading to an ultrafast gelation process. A series of hydrogels can be obtained by altering the concentration of CMCh and the relative content of metal ions. Owing to the dynamic and reversible characteristics of the coordination bonds, the hydrogel exhibits self-healing, self-adaption, and thermoresponsive ability. Moreover, due to the interaction between the amino groups on CMCh and SO42-, the hydrogel undergoes phase separation and can be painlessly detached from the skin with little residue. Taking advantage of all these characteristics, the hydrogel is used as a wound dressing and can significantly accelerate skin tissue regeneration and wound closure. This hydrogel has great potential in the application of tissue engineering.


Asunto(s)
Vendajes , Quitosano/análogos & derivados , Hidrogeles , Cicatrización de Heridas/efectos de los fármacos , Animales , Células COS , Quitosano/química , Quitosano/farmacología , Chlorocebus aethiops , Humanos , Hidrogeles/química , Hidrogeles/farmacología , Masculino , Ratas , Ratas Sprague-Dawley , Piel/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA