Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 337
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
Biomolecules ; 14(6)2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38927135

RESUMEN

Lysine acetylation of proteins plays a critical regulatory function in plants. A few advances have been made in the study of plant acetylproteome. However, until now, there have been few data on Rhododendron chrysanthum Pall. (R. chrysanthum). We analyzed the molecular mechanisms of photosynthesis and stress resistance in R. chrysanthum under UV-B stress. We measured chlorophyll fluorescence parameters of R. chrysanthum under UV-B stress and performed a multi-omics analysis. Based on the determination of chlorophyll fluorescence parameters, R. chrysanthum Y(NO) (Quantum yield of non-photochemical quenching) increased under UV-B stress, indicating that the plant was damaged and photosynthesis decreased. In the analysis of acetylated proteomics data, acetylated proteins were found to be involved in a variety of biological processes. Notably, acetylated proteins were significantly enriched in the pathways of photosynthesis and carbon fixation, suggesting that lysine acetylation modifications have an important role in these activities. Our findings suggest that R. chrysanthum has decreased photosynthesis and impaired photosystems under UV-B stress, but NPQ shows that plants are resistant to UV-B. Acetylation proteomics revealed that up- or down-regulation of acetylation modification levels alters protein expression. Acetylation modification of key enzymes of the Calvin cycle (Rubisco, GAPDH) regulates protein expression, making Rubisco and GAPDH proteins expressed as significantly different proteins, which in turn affects the carbon fixation capacity of R. chrysanthum. Thus, Rubisco and GAPDH are significantly differentially expressed after acetylation modification, which affects the carbon fixation capacity and thus makes the plant resistant to UV-B stress. Lysine acetylation modification affects biological processes by regulating the expression of key enzymes in photosynthesis and carbon fixation, making plants resistant to UV-B stress.


Asunto(s)
Ciclo del Carbono , Fotosíntesis , Rhododendron , Ribulosa-Bifosfato Carboxilasa , Rayos Ultravioleta , Acetilación , Rhododendron/metabolismo , Rhododendron/genética , Ribulosa-Bifosfato Carboxilasa/metabolismo , Estrés Fisiológico , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Proteómica , Regulación de la Expresión Génica de las Plantas , Clorofila/metabolismo , Lisina/metabolismo
2.
ACS Appl Mater Interfaces ; 16(25): 32240-32248, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38877977

RESUMEN

Sn-based perovskite solar cells (Sn-PSCs) have received increasing attention due to their nontoxicity and potentially high efficiency. However, the poor stability of Sn2+ ions remains a major problem in achieving stable and efficient Sn-PSCs. Herein, an in situ polymerization strategy using allyl thiourea and ethylene glycol dimethacrylate as cross-linking agents in the Sn-based perovskite precursor is proposed to improve the device performance of Sn-PSCs. The C═S and N-H bonds of the cross-linkers are able to coordinate with SnI2 and inhibit the oxidation of Sn2+, thereby reducing defect density and improving the stability of Sn-based perovskite films. The high quality of the perovskite film induced by the in situ polymerization strategy delivers an improved power conversion efficiency (PCE) from 7.50 to 9.22%. More importantly, the unpackaged device with cross-linkers maintained more than 70% of the initial PCE after 150 h of AM 1.5G light soaking in a nitrogen atmosphere and 80% of the initial PCE after 1800 h in dark conditions. This work demonstrates that the in situ polymerization strategy is an effective method to enhance the stability of Sn-based perovskite films and devices.

3.
Biodivers Data J ; 12: e127120, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38912114

RESUMEN

Background: Wuzhizhou Island (WZZ) is located in Haitang Bay in the northern region of Sanya, Hainan Island. The sea area surrounding WZZ represents a typical tropical marine ecosystem, characterised by diverse and complex habitats. Therefore, there is a rich variety of marine fish species at WZZ. The marine ecosystem of WZZ was seriously destroyed initially in the 1970s-1980s and recovered in the 1990s, then constructed as the first national tropical marine ranch demonstration area of China in 2019. As fish is an important high trophic vertebrate in the marine ecosystem, understanding the composition and distribution of fish species could help us to recognise the status of the ecosystem of WZZ and supply scientific data for construction of the national marine ranch demonstration area. This study used eDNA technology to investigate the composition of fish community surrounding WZZ and provided a scientific basis for realising and protecting the marine ecosystem of the South China Sea. New information: The WZZ is an offshore island in the South China Sea, harbouring abundant marine fish resources. Although previous research investigated fish species of WZZ, the data were, however, still incomplete due to limitation of sampling methods and survey seasons. In this study, we intended to take advantage of eDNA and supplement data of fish species at WZZ as much as possible. Based on eDNA, this study provided the data on 188 fish species (including nine undetermined species denoted by genus sp.) belonging to 17 orders, 63 families and 124 genera and they were the more comprehensive records of fish species surrounding WZZ. In addition, the information on Molecular Operational Taxonomic Units (MOTUs) for taxon identification was also provided, aiming to contribute to the establishment of a specific eDNA taxon database for fish of the South China Sea. This study included two datasets, which were occurrences of fish taxa at WZZ, as well as MOTUs sequences and geographical coordinate information of sampling sites. The "fish taxon occurrences" dataset presented records on taxonomic, distribution and habitat conditions of 188 fish species detected using eDNA, as well as the latitude and longitude information of the sampling sites, the "MOTUs information" dataset provided the MOTUs sequences, source of sequences, abundance of sequences for 188 fish species, also included the species matched in NCBI and the best NCBI BLAST sequence similarity.

4.
New Phytol ; 243(3): 881-893, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38840520

RESUMEN

Differences in demographic and environmental niches facilitate plant species coexistence in tropical forests. However, the adaptations that enable species to achieve higher demographic rates (e.g. growth or survival) or occupy unique environmental niches (e.g. waterlogged conditions) remain poorly understood. Anatomical traits may better predict plant environmental and demographic strategies because they are direct measurements of structures involved in these adaptations. We collected 18 leaf and twig traits from 29 tree species in a tropical freshwater swamp forest in Singapore. We estimated demographic parameters of the 29 species from growth and survival models, and degree of association toward swamp habitats. We examined pairwise trait-trait, trait-demography and trait-environment links while controlling for phylogeny. Leaf and twig anatomical traits were better predictors of all demographic parameters than other commonly measured leaf and wood traits. Plants with wider vessels had faster growth rates but lower survival rates. Leaf and spongy mesophyll thickness predicted swamp association. These findings demonstrate the utility of anatomical traits as indicators of plant hydraulic strategies and their links to growth-mortality trade-offs and waterlogging stress tolerance that underlie species coexistence mechanisms in tropical forest trees.


Asunto(s)
Adaptación Fisiológica , Bosques , Hojas de la Planta , Árboles , Clima Tropical , Humedales , Hojas de la Planta/fisiología , Hojas de la Planta/anatomía & histología , Árboles/fisiología , Carácter Cuantitativo Heredable , Agua Dulce , Ecosistema , Especificidad de la Especie
5.
Phys Chem Chem Phys ; 26(26): 18196-18204, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38904087

RESUMEN

The Zr-2.5Nb alloy is a typical pressure tube material in heavy water nuclear reactors, and an increase of hydrogen isotope content in the alloy during service can pose major safety risks; hot vacuum extraction-mass spectrometry is an efficient method for evaluating hydrogen isotope concentrations in the Zr-2.5Nb alloy. This work investigates the kinetics and thermodynamic properties of deuterium (D) absorption and desorption of the Zr-2.5Nb alloy using the constant volume adsorption method and the hot vacuum extraction method. In addition to the previously reported volume contraction model, it was observed that at 600 °C and above, the reaction between D2 and Zr-2.5Nb is dominated by diffusion, while the reaction is predominantly influenced by surface adsorption and dissociation below 600 °C. Phase transition sequence of Zr-2.5Nb deuterides during non-isothermal desorption was established using quantitatively calibrated thermal desorption spectra combined with the phase transition process of deuteride decomposition. These results can provide important references for optimizing the process parameters of the hot vacuum extraction-mass spectrometry method.

6.
ACS Nano ; 18(23): 15055-15066, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38825792

RESUMEN

The stability issue of Sn-based perovskite solar cells (PSCs) is expected to be resolved by involving a two-dimensional (2D) layered structure. However, Sn-based 2D PSCs, especially Dion-Jacobson (DJ)-phase ones with potentially good stability, have rarely been reported. Herein, superior DJ-phase Sn 2D perovskites with 3-aminobenzylamine (3ABA2+) or 4-aminobenzylamine (4ABA2+) π-conjugated short-chain ligands are reported to fabricate efficient 2D lead-free PSCs. Notably, the high dipole moment of the 3ABAI2 organic spacer is approved to possess faster charge transfer for forming (3ABA)FA4Sn5I16 2D perovskite with an extremely low exciton binding energy (only 84 meV). In combination with a diacetate partial substitution and methylamine iodide/bromide (MAI/MABr) post-treatment strategy to delay crystallization and improve compactness and coverage of the perovskite film, a record power conversion efficiency (PCE) of 6.81% and stability of 840 h (less than 5% degradation in a N2 atmosphere for unencapsulated devices) are acquired in eventual (3ABA)FA4Sn5I16 2D PSCs, which are among the highest PCE and the longest stability of Sn-based 2D PSCs reported to date. Our work provides a prospective molecule design and film preparation strategy of 2D Sn perovskites toward nontoxic high-performance tin-based PSCs, which pushes the almost stagnant research forward.

7.
Int J Surg ; 110(5): 2593-2603, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38748500

RESUMEN

PURPOSE: The authors aimed to establish an artificial intelligence (AI)-based method for preoperative diagnosis of breast lesions from contrast enhanced mammography (CEM) and to explore its biological mechanism. MATERIALS AND METHODS: This retrospective study includes 1430 eligible patients who underwent CEM examination from June 2017 to July 2022 and were divided into a construction set (n=1101), an internal test set (n=196), and a pooled external test set (n=133). The AI model adopted RefineNet as a backbone network, and an attention sub-network, named convolutional block attention module (CBAM), was built upon the backbone for adaptive feature refinement. An XGBoost classifier was used to integrate the refined deep learning features with clinical characteristics to differentiate benign and malignant breast lesions. The authors further retrained the AI model to distinguish in situ and invasive carcinoma among breast cancer candidates. RNA-sequencing data from 12 patients were used to explore the underlying biological basis of the AI prediction. RESULTS: The AI model achieved an area under the curve of 0.932 in diagnosing benign and malignant breast lesions in the pooled external test set, better than the best-performing deep learning model, radiomics model, and radiologists. Moreover, the AI model has also achieved satisfactory results (an area under the curve from 0.788 to 0.824) for the diagnosis of in situ and invasive carcinoma in the test sets. Further, the biological basis exploration revealed that the high-risk group was associated with the pathways such as extracellular matrix organization. CONCLUSIONS: The AI model based on CEM and clinical characteristics had good predictive performance in the diagnosis of breast lesions.


Asunto(s)
Inteligencia Artificial , Neoplasias de la Mama , Mamografía , Humanos , Femenino , Mamografía/métodos , Neoplasias de la Mama/diagnóstico por imagen , Estudios Retrospectivos , Persona de Mediana Edad , Adulto , Medios de Contraste , Anciano , Aprendizaje Profundo , Mama/diagnóstico por imagen , Mama/patología
8.
Plant Divers ; 46(3): 395-405, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38798723

RESUMEN

Stomatal regulation is critical for mangroves to survive in the hyper-saline intertidal zone where water stress is severe and water availability is highly fluctuant. However, very little is known about the stomatal sensitivity to vapour pressure deficit (VPD) in mangroves, and its co-ordination with stomatal morphology and leaf hydraulic traits. We measured the stomatal response to a step increase in VPD in situ, stomatal anatomy, leaf hydraulic vulnerability and pressure-volume traits in nine true mangrove species of five families and collected the data of genome size. We aimed to answer two questions: (1) Does stomatal morphology influence stomatal dynamics in response to a high VPD in mangroves? with a consideration of possible influence of genome size on stomatal morphology; and (2) do leaf hydraulic traits influence stomatal sensitivity to VPD in mangroves? We found that the stomata of mangrove plants were highly sensitive to a step rise in VPD and the stomatal responses were directly affected by stomatal anatomy and hydraulic traits. Smaller, denser stomata was correlated with faster stomatal closure at high VPD across the species of Rhizophoraceae, and stomata size negatively and vein density positively correlated with genome size. Less negative leaf osmotic pressure at the full turgor (πo) was related to higher operating steady-state stomatal conductance (gs); and a higher leaf capacitance (Cleaf) and more embolism resistant leaf xylem were associated with slower stomatal responses to an increase in VPD. In addition, stomatal responsiveness to VPD was indirectly affected by leaf morphological traits, which were affected by site salinity and consequently leaf water status. Our results demonstrate that mangroves display a unique relationship between genome size, stomatal size and vein packing, and that stomatal responsiveness to VPD is regulated by leaf hydraulic traits and stomatal morphology. Our work provides a quantitative framework to better understand of stomatal regulation in mangroves in an environment with high salinity and dynamic water availability.

10.
Glob Chang Biol ; 30(4): e17274, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38605677

RESUMEN

Climate change and other anthropogenic disturbances are increasing liana abundance and biomass in many tropical and subtropical forests. While the effects of living lianas on species diversity, ecosystem carbon, and nutrient dynamics are receiving increasing attention, the role of dead lianas in forest ecosystems has been little studied and is poorly understood. Trees and lianas coexist as the major woody components of forests worldwide, but they have very different ecological strategies, with lianas relying on trees for mechanical support. Consequently, trees and lianas have evolved highly divergent stem, leaf, and root traits. Here we show that this trait divergence is likely to persist after death, into the afterlives of these organs, leading to divergent effects on forest biogeochemistry. We introduce a conceptual framework combining horizontal, vertical, and time dimensions for the effects of liana proliferation and liana tissue decomposition on ecosystem carbon and nutrient cycling. We propose a series of empirical studies comparing traits between lianas and trees to answer questions concerning the influence of trait afterlives on the decomposability of liana and tree organs. Such studies will increase our understanding of the contribution of lianas to terrestrial biogeochemical cycling, and help predict the effects of their increasing abundance.


Asunto(s)
Ecosistema , Clima Tropical , Bosques , Árboles , Carbono
11.
J Cancer Res Clin Oncol ; 150(3): 141, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38504026

RESUMEN

PURPOSE: The purpose of the current investigation is to compare the efficacy of different diffusion models and diffusion kurtosis imaging (DKI) in differentiating stage IA endometrial carcinoma (IAEC) from benign endometrial lesions (BELs). METHODS: Patients with IAEC, endometrial hyperplasia (EH), or a thickened endometrium confirmed between May 2016 and August 2022 were retrospectively enrolled. All of the patients underwent a preoperative pelvic magnetic resonance imaging (MRI) examination. The apparent diffusion coefficient (ADC) from the mono-exponential model, pure diffusion coefficient (D), pseudo-diffusion coefficient (D*), perfusion fraction (f) from the bi-exponential model, distributed diffusion coefficient (DDC), water molecular diffusion heterogeneity index from the stretched-exponential model, diffusion coefficient (Dk) and diffusion kurtosis (K) from the DKI model were calculated. Receiver operating characteristic (ROC) analysis was used to evaluate the diagnostic efficiency. RESULTS: A total of 90 patients with IAEC and 91 patients with BELs were enrolled. The values of ADC, D, DDC and Dk were significantly lower and D* and K were significantly higher in cases of IAEC (p < 0.05). Multivariate analysis showed that K was the only predictor. The area under the ROC curve of K was 0.864, significantly higher compared with the ADC (0.601), D (0.811), D* (0.638), DDC (0.743) and Dk (0.675). The sensitivity, specificity and accuracy of K were 78.89%, 85.71% and 80.66%, respectively. CONCLUSION: Advanced diffusion-weighted imaging models have good performance for differentiating IAEC from EH and endometrial thickening. Among all of the diffusion parameters, K showed the best performance and was the only independent predictor. Diffusion kurtosis imaging was defined as the most valuable model in the current context.


Asunto(s)
Imagen de Difusión por Resonancia Magnética , Neoplasias Endometriales , Femenino , Humanos , Sensibilidad y Especificidad , Estudios Retrospectivos , Curva ROC , Imagen de Difusión por Resonancia Magnética/métodos , Neoplasias Endometriales/diagnóstico por imagen
12.
ACS Appl Mater Interfaces ; 16(13): 17051-17061, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38511856

RESUMEN

Luminescent perovskite nanocrystals (NCs), possessing the advantages of low cost, easy detection, and excellent luminescence, are becoming more and more significant in the fields of information encryption and decryption. Most hydrochromic perovskite NCs for information encryption have moderate reversibility and are easily passively decrypted by water in the moist air, limiting their practical applications. Herein, a lyochromic material is synthesized based on reversible phase transition between luminescent CsPbBr3-HBr (pretreating CsPbBr3 with HBr) and nonluminescent Cs4PbBr6, exhibiting excellent reversibility in 50 cycles triggered by CsBr solution. HBr treatment boosts the ion migration of NCs via diminishing surface ligands and passivating Br vacancy, assisting CsBr concentration acting as a crucial factor in dynamic ion exchange equilibrium between the trigger solution and CsPbBr3-HBr. By utilizing CsPbBr3-HBr as a safety ink, the CsBr-triggered photoluminescence switch has been demonstrated to be reproducible, stable, and reliable for information encryption and decryption.

13.
Plant Physiol Biochem ; 210: 108541, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38552264

RESUMEN

Heat shock transcription factors (Hsfs) play multifaceted roles in plant growth, development, and responses to environmental factors. However, their involvement in seed dormancy and germination processes has remained elusive. In this study, we identified a wheat class B Hsf gene, TaHsf-7A, with higher expression in strong-dormancy varieties compared to weak-dormancy varieties during seed imbibition. Specifically, TaHsf-7A expression increased during seed dormancy establishment and subsequently declined during dormancy release. Through the identification of a 1-bp insertion (ins)/deletion (del) variation in the coding region of TaHsf-7A among wheat varieties with different dormancy levels, we developed a CAPS marker, Hsf-7A-1319, resulting in two allelic variations: Hsf-7A-1319-ins and Hsf-7A-1319-del. Notably, the allele Hsf-7A-1319-ins correlated with a reduced seed germination rate and elevated dormancy levels, while Hsf-7A-1319-del exhibited the opposite trend across 175 wheat varieties. The association of TaHsf-7A allelic status with seed dormancy and germination levels was confirmed in various genetically modified species, including Arabidopsis, rice, and wheat. Results from the dual luciferase assay demonstrated notable variations in transcriptional activity among transformants harboring distinct TaHsf-7A alleles. Furthermore, the levels of abscisic acid (ABA) and gibberellin (GA), along with the expression levels of ABA and GA biosynthesis genes, showed significant differences between transgenic rice lines carrying different alleles of TaHsf-7A. These findings represent a significant step towards a comprehensive understanding of TaHsf-7A's involvement in the dormancy and germination processes of wheat seeds.


Asunto(s)
Germinación , Factores de Transcripción del Choque Térmico , Latencia en las Plantas , Proteínas de Plantas , Semillas , Triticum , Alelos , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Germinación/genética , Factores de Transcripción del Choque Térmico/genética , Factores de Transcripción del Choque Térmico/metabolismo , Latencia en las Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Semillas/genética , Semillas/crecimiento & desarrollo , Triticum/genética , Triticum/metabolismo , Triticum/crecimiento & desarrollo
14.
Int J Nanomedicine ; 19: 2957-2972, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38549840

RESUMEN

Introduction: Nano-mesoporous bioactive glass and RGD peptide-coated collagen membranes have great potential in wound healing. However, the application of their compound has not been further studied. Our purpose is to prepare a novel bioactive collagen scaffold containing both NMBG stent and adhesion peptides (BM), which then proves its promising prospect the assessment of physical properties, biocompatibility, GSK-3ß/ß-catenin signaling axis and toxicological effects. Methods: The structural and morphological changes of BM were analyzed using scanning electron microscopy (SEM) and Energy Dispersive Spectroscopy (EDS). In vivo, wound healing of BM was assessed in SD rats through dynamic monitoring and calculation of wound healing rate. Immunohistofluorescence (IHF), H&E, and Masson staining were utilized; in vitro, primary cell culture, and a variety of assays including CCK-8, Transwell, Scratch, Immunocytofluorescence (ICF), and Western blot (WB) were performed, both for morphology and molecular analysis. Results and Discussion: Preparation of BM involved attaching NMBG to RGD-exposed collagen while avoiding the use of toxic chemical reagents. BM exhibited a distinctive superficial morphology with increased Si content, indicating successful NMBG attachment. In vivo studies on SD rats demonstrated the superior wound healing capability of BM, as evidenced by accelerated wound closure, thicker epithelial layers, and enhanced collagen deposition compared to the NC group. Additionally, BM promoted skin fibroblast migration and proliferation, possibly through activation of the GSK-3ß/ß-catenin signaling axis, which was crucial for tissue regeneration. This study underscored the potential of BM as an effective wound-healing dressing. Conclusion: A new method for synthesizing ECM-like membranes has been developed using nano-mesoporous bioactive glass and collagen-derived peptides. This approach enhances the bioactivity of biomaterials through surface functionalization and growth factor-free therapy.


Asunto(s)
Biomimética , beta Catenina , Ratas , Animales , Glucógeno Sintasa Quinasa 3 beta/metabolismo , beta Catenina/metabolismo , Ratas Sprague-Dawley , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Fibroblastos , Proliferación Celular , Péptidos/farmacología
15.
Nanoscale ; 16(9): 4760-4767, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38303682

RESUMEN

Micro/nano-LEDs for augmented reality (AR) and virtual reality (VR) applications face the challenge that the edge effect in micro-LEDs becomes significant as the size of devices shrinks. This issue can be effectively addressed through thin-film encapsulation, where zero stress of the thin film is a crucial factor, apart from the barrier property. Herein, a stress-modulation strategy was developed through a binary-cycle atomic-layer deposition (ALD) process combining PEALD SiO2 (compressive stress) and thermal ALD Al2O3 (tensile stress) in the same process window. The hybrid ALD process allows avoiding extra thermal stress generation and enables precise modulation of the atomic-scale thickness, thereby allowing the fabrication of nanolaminates with modulated stress. The optical nanolaminate developed herein achieved a stress level of near-zero, representing one of the best among reported studies. The structural design, characterized by a high-low refractive index, tortuous permeation path, and ultra-thin thickness, remarkably improved the optical transmittance and barrier properties (8.68 × 10-6 g m-2 day-1) of the nanolaminate. Moreover, the micro-LED encapsulated with SA2/1 exhibited excellent stability under thermal cycling, damp heat, and applied stress conditions. The mechanical stability of the nanolaminate was due to the strong interaction between Si-O and Al-O and the abundance of Si-O-Al bonding in the interface. Overall, the ALD-coating process provides a new avenue for accurately controlling the stress on nanolaminates, and has potential application to bolster the reliability of optoelectronic devices.

16.
J Neurosci ; 44(12)2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38418221

RESUMEN

As the most common form of dementia in the world, Alzheimer's disease (AD) is a progressive neurological disorder marked by cognitive and behavioral impairment. According to previous researches, abundant social connections shield against dementia. However, it is still unclear how exactly social interactions benefit cognitive abilities in people with AD and how this process is used to increase their general cognitive performance. In this study, we found that single novel social (SNS) stimulation promoted c-Fos expression and increased the protein levels of mature ADAM10/17 and sAPPα in the ventral hippocampus (vHPC) of wild-type (WT) mice, which are hippocampal dorsal CA2 (dCA2) neuron activity and vHPC NMDAR dependent. Additionally, we discovered that SNS caused similar changes in an AD model, FAD4T mice, and these alterations could be reversed by α-secretase inhibitor. Furthermore, we also found that multiple novel social (MNS) stimulation improved synaptic plasticity and memory impairments in both male and female FAD4T mice, accompanied by α-secretase activation and Aß reduction. These findings provide insight into the process underpinning how social interaction helps AD patients who are experiencing cognitive decline, and we also imply that novel social interaction and activation of the α-secretase may be preventative and therapeutic in the early stages of AD.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Masculino , Ratones , Femenino , Animales , Enfermedad de Alzheimer/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Ratones Transgénicos , Trastornos de la Memoria/metabolismo , Hipocampo/metabolismo , Péptidos beta-Amiloides/metabolismo , Modelos Animales de Enfermedad
17.
J Xray Sci Technol ; 32(3): 583-596, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38306089

RESUMEN

PURPOSE: The explore the added value of peri-calcification regions on contrast-enhanced mammography (CEM) in the differential diagnosis of breast lesions presenting as only calcification on routine mammogram. METHODS: Patients who underwent CEM because of suspicious calcification-only lesions were included. The test set included patients between March 2017 and March 2019, while the validation set was collected between April 2019 and October 2019. The calcifications were automatically detected and grouped by a machine learning-based computer-aided system. In addition to extracting radiomic features on both low-energy (LE) and recombined (RC) images from the calcification areas, the peri-calcification regions, which is generated by extending the annotation margin radially with gradients from 1 mm to 9 mm, were attempted. Machine learning (ML) models were built to classify calcifications into malignant and benign groups. The diagnostic matrices were also evaluated by combing ML models with subjective reading. RESULTS: Models for LE (significant features: wavelet-LLL_glcm_Imc2_MLO; wavelet-HLL_firstorder_Entropy_MLO; wavelet-LHH_glcm_DifferenceVariance_CC; wavelet-HLL_glcm_SumEntropy_MLO;wavelet-HLH_glrlm_ShortRunLowGray LevelEmphasis_MLO; original_firstorder_Entropy_MLO; original_shape_Elongation_MLO) and RC (significant features: wavelet-HLH_glszm_GrayLevelNonUniformityNormalized_MLO; wavelet-LLH_firstorder_10Percentile_CC; original_firstorder_Maximum_MLO; wavelet-HHH_glcm_Autocorrelation_MLO; original_shape_Elongation_MLO; wavelet-LHL_glszm_GrayLevelNonUniformityNormalized_MLO; wavelet-LLH_firstorder_RootMeanSquared_MLO) images were set up with 7 features. Areas under the curve (AUCs) of RC models are significantly better than those of LE models with compact and expanded boundary (RC v.s. LE, compact: 0.81 v.s. 0.73, p < 0.05; expanded: 0.89 v.s. 0.81, p < 0.05) and RC models with 3 mm boundary extension yielded the best performance compared to those with other sizes (AUC = 0.89). Combining with radiologists' reading, the 3mm-boundary RC model achieved a sensitivity of 0.871 and negative predictive value of 0.937 with similar accuracy of 0.843 in predicting malignancy. CONCLUSIONS: The machine learning model integrating intra- and peri-calcification regions on CEM has the potential to aid radiologists' performance in predicting malignancy of suspicious breast calcifications.


Asunto(s)
Neoplasias de la Mama , Mama , Calcinosis , Medios de Contraste , Aprendizaje Automático , Mamografía , Humanos , Mamografía/métodos , Femenino , Calcinosis/diagnóstico por imagen , Neoplasias de la Mama/diagnóstico por imagen , Persona de Mediana Edad , Diagnóstico Diferencial , Mama/diagnóstico por imagen , Adulto , Anciano , Interpretación de Imagen Radiográfica Asistida por Computador/métodos
18.
Tree Physiol ; 44(3)2024 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-38366388

RESUMEN

Low temperatures largely determine the geographic limits of plant species by reducing survival and growth. Inter-specific differences in the geographic distribution of mangrove species have been associated with cold tolerance, with exclusively tropical species being highly cold-sensitive and subtropical species being relatively cold-tolerant. To identify species-specific adaptations to low temperatures, we compared the chilling stress response of two widespread Indo-West Pacific mangrove species from Rhizophoraceae with differing latitudinal range limits-Bruguiera gymnorhiza (L.) Lam. ex Savigny (subtropical range limit) and Rhizophora apiculata Blume (tropical range limit). For both species, we measured the maximum photochemical efficiency of photosystem II (Fv/Fm) as a proxy for the physiological condition of the plants and examined gene expression profiles during chilling at 15 and 5 °C. At 15 °C, B. gymnorhiza maintained a significantly higher Fv/Fm than R. apiculata. However, at 5 °C, both species displayed equivalent Fv/Fm values. Thus, species-specific differences in chilling tolerance were only found at 15 °C, and both species were sensitive to chilling at 5 °C. At 15 °C, B. gymnorhiza downregulated genes related to the light reactions of photosynthesis and upregulated a gene involved in cyclic electron flow regulation, whereas R. apiculata downregulated more RuBisCo-related genes. At 5 °C, both species repressed genes related to CO2 assimilation. The downregulation of genes related to light absorption and upregulation of genes related to cyclic electron flow regulation are photoprotective mechanisms that likely contributed to the greater photosystem II photochemical efficiency of B. gymnorhiza at 15 °C. The results of this study provide evidence that the distributional range limits and potentially the expansion rates of plant species are associated with differences in the regulation of photosynthesis and photoprotective mechanisms under low temperatures.


Asunto(s)
Rhizophoraceae , Rhizophoraceae/genética , Rhizophoraceae/metabolismo , Complejo de Proteína del Fotosistema II/genética , Frío , Fotosíntesis/genética , Perfilación de la Expresión Génica
19.
Plant Divers ; 46(1): 126-133, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38343598

RESUMEN

Lipids may play an important role in preventing gas embolisms by coating nanobubbles in xylem sap. Few studies on xylem sap lipids have been reported for temperate plants, and it remain unclear whether sap lipids have adaptational significance in tropical plants. In this study, we quantify the lipid composition of xylem sap for angiosperm species from a tropical savanna (seven species) and a seasonal rainforest (five species) using mass spectrometry. We found that all twelve species studied contained lipids in their xylem sap, including galactolipids, phospholipids and triacylglycerol, with a total lipid concentration ranging from 0.09 to 0.26 nmol/L. There was no difference in lipid concentration or composition between plants from the two sites, and the lipid concentration was negatively related to species' open vessel volume. Furthermore, savanna species showed little variation in lipid composition between the dry and the rainy season. These results support the hypothesis that xylem sap lipids are derived from the cytoplasm of individual conduit cells, remain trapped inside individual conduits, and undergo few changes in composition over consecutive seasons. A xylem sap lipidomic data set, which includes 12 tropical tree species from this study and 11 temperate tree species from literature, revealed no phylogenetic signals in lipid composition for these species. This study fills a knowledge gap in the lipid content of xylem sap in tropical trees and provides additional support for their common distribution in xylem sap of woody angiosperms. It appears that xylem sap lipids have no adaptive significance.

20.
Int J Mol Sci ; 25(2)2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38279235

RESUMEN

The presence of the ozone hole increases the amount of UV radiation reaching a plant's surface, and UV-B radiation is an abiotic stress capable of affecting plant growth. Rhododendron chrysanthum Pall. (R. chrysanthum) grows in alpine regions, where strong UV-B radiation is present, and has been able to adapt to strong UV-B radiation over a long period of evolution. We investigated the response of R. chrysanthum leaves to UV-B radiation using widely targeted metabolomics and transcriptomics. Although phytohormones have been studied for many years in plant growth and development and adaptation to environmental stresses, this paper is innovative in terms of the species studied and the methods used. Using unique species and the latest research methods, this paper was able to add information to this topic for the species R. chrysanthum. We treated R. chrysanthum grown in a simulated alpine environment, with group M receiving no UV-B radiation and groups N and Q (externally applied abscisic acid treatment) receiving UV-B radiation for 2 days (8 h per day). The results of the MN group showed significant changes in phenolic acid accumulation and differential expression of genes related to phenolic acid synthesis in leaves of R. chrysanthum after UV-B radiation. We combined transcriptomics and metabolomics data to map the metabolic regulatory network of phenolic acids under UV-B stress in order to investigate the response of such secondary metabolites to stress. L-phenylalanine, L-tyrosine and phenylpyruvic acid contents in R. chrysanthum were significantly increased after UV-B radiation. Simultaneously, the levels of 3-hydroxyphenylacetic acid, 2-phenylethanol, anthranilate, 2-hydroxycinnamic acid, 3-hydroxycinnamic acid, α-hydroxycinnamic acid and 2-hydroxy-3-phenylpropanoic acid in this pathway were elevated in response to UV-B stress. In contrast, the study in the NQ group found that externally applied abscisic acid (ABA) in R. chrysanthum had greater tolerance to UV-B radiation, and phenolic acid accumulation under the influence of ABA also showed greater differences. The contents of 2-phenylethanol, 1-o-p-coumaroyl-ß-d-glucose, 2-hydroxy-3-phenylpropanoic acid, 3-(4-hydroxyphenyl)-propionic acid and 3-o-feruloylquinic ac-id-o-glucoside were significantly elevated in R. chrysanthum after external application of ABA to protect against UV-B stress. Taken together, these studies of the three groups indicated that ABA can influence phenolic acid production to promote the response of R. chrysanthum to UV-B stress, which provided a theoretical reference for the study of its complex molecular regulatory mechanism.


Asunto(s)
Glucosa , Hidroxibenzoatos , Alcohol Feniletílico , Fenilpropionatos , Rhododendron , Ácido Abscísico/metabolismo , Rhododendron/genética , Ácidos Cumáricos , Rayos Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA