Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 158
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Foods ; 13(13)2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38998663

RESUMEN

In the present study, a new degraded konjac glucomannan (DKGM) was prepared using a crude enzyme from abalone (Haliotis discus hannai) viscera, and its physicochemical properties were investigated. After enzymatic hydrolysis, the viscosity of KGM obviously decreased from 15,500 mPa·s to 398 mPa·s. The rheological properties analysis of KGM and DKGMs revealed that they were pseudoplastic fluids, and pseudoplasticity, viscoelasticity, melting temperature, and gelling temperature significantly decreased after enzymatic hydrolysis, especially for KGM-180 and KGM-240. In addition, the molecular weight of KGM decreased from 1.80 × 106 Da, to 0.45 × 106 Da and the polydispersity index increased from 1.17 to 1.83 after 240 min of degradation time. Compared with natural KGM, the smaller particle size distribution of DKGM further suggests enzyme hydrolysis reduces the aggregation of molecular chains with low molecular weight. FT-IR and FESEM analyses showed that the fragmented KMG chain did not affect the structural characteristics of molecular monomers; however, the dense three-dimensional network microstructure formed by intermolecular interaction changed to fragment microstructure after enzyme hydrolysis. These results revealed that the viscosity and rheological properties of KGM could be controlled and effectively changed using crude enzymes from abalone viscera. This work provides theoretical guidance for the promising application of DKGM in the food industry.

2.
Prog Lipid Res ; 95: 101289, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38986846

RESUMEN

Atherosclerosis is a causative factor associated with cardiovascular disease (CVD). Over the past few decades, extensive research has been carried out on the relationship between the n-6/n-3 fatty acid ratio of ingested lipids and the progression of atherosclerosis. However, there are still many uncertainties regarding the precise nature of this relationship, which has led to challenges in providing sound dietary advice to the general public. There is therefore a pressing need to review our current understanding of the relationship between the dietary n-6/n-3 fatty acid ratio and atherosclerosis, and to summarize the underlying factors contributing to the current uncertainties. Initially, this article reviews the association between the n-6/n-3 fatty acid ratio and CVDs in different countries. A summary of the current understanding of the molecular mechanisms of n-6/n-3 fatty acid ratio on atherosclerosis is then given, including inflammatory responses, lipid metabolism, low-density lipoprotein cholesterol oxidation, and vascular function. Possible reasons behind the current controversies on the relationship between the n-6/n-3 fatty acid ratio and atherosclerosis are then provided, including the precise molecular structures of the fatty acids, diet-gene interactions, the role of fat-soluble phytochemicals, and the impact of other nutritional factors. An important objective of this article is to highlight areas where further research is needed to clarify the role of n-6/n-3 fatty acid ratio on atherosclerosis.

3.
Food Chem ; 455: 139898, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38823123

RESUMEN

Chimonanthus praecox (L.) Link kernel oil (LMO) has the potential to expand the variety of nutraceutical plant oils available and provide support for the application of functional food. This study aimed to assess the edible potential of LMO by examining its physicochemical characteristics, digestion behaviors, and nutraceutical properties. The results revealed that LMO has a high oil content of 40.84% and is particularly rich in linoleic acid (53.37-56.30%), oleic acid (22.04-25.08%) and triacylglycerol (TAG) of linoleic acid -palmitoleic acid- oleic acid (10.57-12.70%). The quality characteristics and phytochemical composition of LMO were found to be influenced by variety and extraction methods used. In simulated in vitro digestion tests, LMO showed a better lipid release rate and degree. Animal studies further demonstrated that LMO led to better TAG and cholesterol excretion compared to soybean oil and camellia oleifera oil. Overall, this study highlights the potential of LMO as a high-quality edible oil.


Asunto(s)
Suplementos Dietéticos , Digestión , Aceites de Plantas , Animales , Suplementos Dietéticos/análisis , Aceites de Plantas/química , Aceites de Plantas/metabolismo , Triglicéridos/metabolismo , Masculino , Humanos , Ratones
4.
Int J Biol Macromol ; 247: 125852, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37460076

RESUMEN

Shark variable domain of new antigen receptors (VNARs) are the smallest naturally occurring binding domains with properties of low complexity, small size, cytoplasmic expression, and ease of engineering. Green fluorescent protein (GFP) molecules have been analyzed in conventional microscopy, but their spectral characteristics preclude their use in techniques offering substantially higher resolution. Besides, the GFP molecules can be quenched in acidic environment, which makes it necessary to develop anti-GFP antibody to solve these problems. In view of the diverse applications of GFP and unique physicochemical features of VNAR, the present study aims to generate VNARs against GFP. Here, we identified 36 VNARs targeting eCGP123, an extremely stable GFP, by phage display from three immunized sharks. These VNARs bound to eCGP123 with affinity constant KD values ranging from 6.76 to 605 nM. Among them, two lead VNARs named aGFP-14 and aGFP-15 with nanomolar eCGP123-binding affinity were selected for in-depth characterization. aGFP-14 and aGFP-15 recognized similar epitopes on eCGP123. X-ray crystallography studies clarified the mechanism by which aGFP14 interacts with eCGP123. aGFP-14 also showed cross-reaction with EGFP, with KD values of 47.2 nM. Finally, immunostaining analyses demonstrated that aGFP-14 was able to bind effectively to the EGFP expressed in both cultured cells and mouse brain tissues, and can be used as a fluorescence amplifier for EGFP. Our research demonstrates a feasible idea for the screening and production of shark-derived VNARs. The two high-affinity VNARs developed in the study contribute to the diversity of GFP sdAbs and may enhance the applications of GFP.


Asunto(s)
Tiburones , Anticuerpos de Dominio Único , Ratones , Animales , Proteínas Fluorescentes Verdes/genética , Epítopos , Proteínas Portadoras
5.
Int J Biol Macromol ; 242(Pt 3): 125016, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37263085

RESUMEN

Although various researches evaluated the stability and drug loading efficiency of chitosan Pickering emulsion, few studies assessed the role and mechanism of emulsions in gut flora homeostasis. Thus, in the basics of our previously published natural and antimicrobial Pickering emulsions, the function of emulsion on the intestinal microbiota and inflammation response was explored in Kunming mice with peritonitis. The results showed that lipid/peptide nanoparticles emulsion (LPNE) and the chitosan peptide-embedded nanoparticles emulsion (CPENE) presented less collagen fiber than parasin I in peritoneal tissue, and CPENE could reduce peritoneal inflammation by decreasing the expression of NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3). The CPENE showed better histological morphology with a smaller fibrosis area in the spleen. Moreover, CPENE, LPNE, and parasin I-conjugated chitosan nanoparticle emulsion (PCNE) groups can increase the abundance of ABC transporters, DNA repair, and recombination proteins, and improve gut microbial. Furthermore, the Pickering emulsion showed a better protection effect on the composition and function of intestinal microbiota by decreasing interleukin-1ß secretion and assembly of the inflammasome of NLRP3. These results could provide evidence for intestinal microbiota homeostasis of chitosan Pickering emulsion in inflammation-related diseases.


Asunto(s)
Quitosano , Microbioma Gastrointestinal , Nanopartículas , Peritonitis , Ratones , Animales , Emulsiones/química , Quitosano/química , Proteína con Dominio Pirina 3 de la Familia NLR , Ratones Endogámicos NOD , Peritonitis/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Nanopartículas/química , Tamaño de la Partícula
6.
J Food Sci ; 88(6): 2397-2410, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37178315

RESUMEN

Margarine is a typical water-in-oil (W/O) emulsion fat product. Due to the presence of a water-oil interface, the oil oxidation in the emulsion system is the interface reaction, which is much faster than that in bulk oil and shows different oxidation mechanisms. The analysis of Rancimat and electron spin resonance indicated that α-tocopherol and EGCG show synergistic antioxidant effects in the margarine. After 20 days of accelerated oxidation storage, the antioxidant effect of the compound antioxidant (50 mg/kg α-tocopherol + 350 mg/kg EGCG) on the margarine was significantly higher than that of the single antioxidant α-tocopherol and EGCG. Based on the results of antioxidants partitioning, electrochemistry, fluorescence spectroscopy, and the oxidative decomposition of antioxidants, the possible mechanisms of interaction were the promotion of α-tocopherol regeneration by EGCG, and the fact that α-tocopherol and EGCG could act at different stages and positions of oxidation. This work will contribute to studying antioxidant interactions and can provide valuable suggestions for practical production. PRACTICAL APPLICATION: This study aims to improve the oxidative stability of margarine by adding α-tocopherol and epigallocatechin-gallate (EGCG) individually and in blends. The mechanism of compound antioxidant synergistic inhibition of margarine oxidation was analyzed, providing theoretical basis and scientific basis for the research and practical application of natural antioxidant synergistic mechanism.


Asunto(s)
Antioxidantes , Catequina , Antioxidantes/farmacología , Antioxidantes/química , alfa-Tocoferol/química , Margarina , Emulsiones/química , Oxidación-Reducción , Catequina/química , Agua , Estrés Oxidativo
7.
Food Chem ; 419: 136071, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37027974

RESUMEN

Many factors are responsible for the diminished quality of shrimp during cold storage, while the role of collagen has rarely been studied. This study therefore investigated the relationship between collagen degradation and changes of textural properties of Pacific white shrimp, and its hydrolysis by endogenous proteinases. The textural properties of shrimp decreased gradually along with disruption of shrimp muscle tissues, and the chewiness property of shrimp muscle showed a linear relationship with collagen contents in muscle during 6-day-storage at 4 °C. Pepsin-solubilized collagen in shrimp muscle consisted of one α1 chain and two α2 chains, revealing a typical tripeptide sequence (i.e., Gly-X-Y) in their molecules. In addition, collagen could be hydrolyzed by crude endogenous proteinases extracted from shrimp hepatopancreas, and serine proteinase plays a critical role in the process. These findings strongly suggested that the quality reduction of shrimp during cold storage is closely associated with collagen degradation.


Asunto(s)
Penaeidae , Péptido Hidrolasas , Animales , Crustáceos , Hepatopáncreas/metabolismo , Penaeidae/química , Péptido Hidrolasas/metabolismo , Alimentos Marinos , Almacenamiento de Alimentos , Frío
8.
Foods ; 12(5)2023 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-36900497

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) in oil are affected by many factors, including temperature, time, and PAHs precursors. Phenolic compounds, as beneficial endogenous components of oil, are often associated with the inhibition of PAHs. However, studies have found that the presence of phenols may lead to increased levels of PAHs. Therefore, this study took Camellia oleifera (C. oleifera) oil as the research object, in order to study the effect of catechin in the formation of PAHs under different heating conditions. The results showed that PAH4 were generated rapidly during the lipid oxidation induction period. When the addition of catechin was >0.02%, more free radicals were quenched than generated, thus inhibiting the generation of PAH4. ESR, FT-IR, and other technologies were employed to prove that when the catechin addition was <0.02%, more free radicals were produced than quenched, causing lipid damage and increasing PAHs intermediates. Moreover, the catechin itself would break and polymerize to form aromatic ring compounds, ultimately leading to the conclusion that phenolic compounds in oil may be involved in the formation of PAHs. This provides suggestions for the flexible processing of phenol-rich oil to balance the retention of beneficial substances, and for the safe control of hazardous substances in real-life applications.

9.
Int J Mol Sci ; 24(5)2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36901737

RESUMEN

Since the discovery of fluorescent proteins (FPs), their rich fluorescence spectra and photochemical properties have promoted widespread biological research applications. FPs can be classified into green fluorescent protein (GFP) and its derivates, red fluorescent protein (RFP) and its derivates, and near-infrared FPs. With the continuous development of FPs, antibodies targeting FPs have emerged. The antibody, a class of immunoglobulin, is the main component of humoral immunity that explicitly recognizes and binds antigens. Monoclonal antibody, originating from a single B cell, has been widely applied in immunoassay, in vitro diagnostics, and drug development. The nanobody is a new type of antibody entirely composed of the variable domain of a heavy-chain antibody. Compared with conventional antibodies, these small and stable nanobodies can be expressed and functional in living cells. In addition, they can easily access grooves, seams, or hidden antigenic epitopes on the surface of the target. This review provides an overview of various FPs, the research progress of their antibodies, particularly nanobodies, and advanced applications of nanobodies targeting FPs. This review will be helpful for further research on nanobodies targeting FPs, making FPs more valuable in biological research.


Asunto(s)
Anticuerpos de Dominio Único , Anticuerpos Monoclonales , Antígenos , Proteínas Fluorescentes Verdes/metabolismo , Cadenas Pesadas de Inmunoglobulina/química , Proteína Fluorescente Roja
10.
J Agric Food Chem ; 71(9): 4101-4112, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36847830

RESUMEN

Due to intestinal malabsorption and poor water solubility, vitamin D (VitD) deficiency in ulcerative colitis (UC) continues to increase. Medium- and long-chain triacylglycerols (MLCT), as novel lipids, have been widely applied in the field of functional food and medicine nutrition. Our previous studies showed that the difference in MLCT structure could affect VitD bioaccessibility in vitro. In this study, our results further indicate that, although identical in fatty acid composition, structured triacylglycerol (STG) had a higher VitD bioavailability (AUC = 15470.81 µg/L × h) and metabolism efficacy [s-25(OH)D, p < 0.05] than physical mixtures of triacylglycerol (PM), which further affect the amelioration efficiency in UC mice. Compared with PM, the damage of colonic tissues, intestinal barrier proteins, and inflammatory cytokines in STG showed better amelioration at the same dose of VitD. This study provides a comprehensive understanding of the mechanism of nutrients in different carriers and a solution for developing nutrients with high absorption efficiency.


Asunto(s)
Colitis Ulcerosa , Deficiencia de Vitamina D , Animales , Ratones , Vitamina D , Colitis Ulcerosa/tratamiento farmacológico , Vitaminas , Ácidos Grasos , Triglicéridos
11.
Food Chem ; 414: 135719, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-36808031

RESUMEN

The purpose of this research was to effectively migrate tocopherols (T) to the oil-water interface layer (oxidation site) by combining hydrophobic T with amphiphilic phospholipids (P) to improve the oxidative stability of O/W emulsions. Firstly, it was confirmed that the antioxidant ability of TP combinations exhibited synergistic effects in O/W emulsions by measuring lipid hydroperoxides and thiobarbituric acid-reactive species. Moreover, the introduction of P into O/W emulsions to improve the distribution of T at the interfacial layer was confirmed by centrifugation and confocal microscopy methods. Subsequently, the possible mechanisms of synergistic interaction between T and P were described by fluorescence spectroscopy, isothermal titration calorimetry, electron spin resonance, quantum chemical methods and the variation of minor constituents during storage. This research revealed an in-depth insight into the antioxidant interaction mechanism of TP combinations using experimental and theoretical approaches, which provided theoretical guidance for developing emulsion products with better oxidative stability.


Asunto(s)
Antioxidantes , Tocoferoles , Tocoferoles/química , Antioxidantes/química , Emulsiones/química , Fosfolípidos , Oxidación-Reducción , Estrés Oxidativo , Agua/química
12.
J Food Sci ; 88(2): 638-649, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36576136

RESUMEN

Disintegration of intramuscular connective tissue is responsible for postmortem tenderization of fish muscles during chilled storage. Matrix metalloproteinase-9 (MMP-9) was reported to be involved in this process, whereas the mechanism has not been revealed. In the present study, purified type I and V collagens from the connective tissues of sea bass (Lateolabrax japonicus) muscles were first prepared. These two kinds of collagens comprise three polypeptide chains (α), forming a typical triple-helical domain as determined by circular dichroism. The complete coding region of MMP-9 containing an open reading frame of 2070 bp encoding 689 amino acid residues was then cloned. The recombinant MMP-9 catalytic domain (rcMMP-9) was expressed in Escherichia coli and exhibited high hydrolyzing activity toward gelatin. Besides, rcMMP-9 was effective in degrading type V collagen rather than type I collagen at 4°C. The enzymatic activity of rcMMP-9 was highly pH-dependent, and its enzymatic activity under neutral and basic conditions was higher than that under acidic conditions. Metal ion Ca2+ was necessary for the maintenance of rcMMP-9 activity, whereas Zn2+ inhibited its activity. Our present study indicated that MMP-9 is responsible for the disintegration of intramuscular connective tissues by cleaving type V collagen during postmortem tenderization of fish muscle. PRACTICAL APPLICATION: Elucidation the involvement of MMP-9 in collagen degradation will deliver a reference for the prevention of muscular protein decomposition during chilled storage of fish fillets.


Asunto(s)
Lubina , Animales , Lubina/genética , Metaloproteinasa 9 de la Matriz/genética , Colágeno Tipo V , Colágeno/genética , Colágeno/metabolismo , Clonación Molecular
13.
Food Chem ; 405(Pt B): 134947, 2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-36410213

RESUMEN

The subunit of tropomyosin (α-TM) from Haliotis discus hannai is an important allergen. The methods to reduce the immunoreactivity of α-TM are worth investigating. Thus, this study confirmed the reacted conditions of α-TM with transglutaminase (TG)-catalyzed cross-linking reaction, TG-catalyzed glycosylation, and glycation. Three processing technologies reduced significantly the contents of α-helix and hydrophobic force of α-TM and increased the surface hydrophobicity. A serological experiment confirmed that the glycated α-TM with xylose showed the lowest IgG/IgE-binding capacity. The inhabitation dot blot displayed that five epitope peptides could bind with the site-specific IgE prepared by the glycated α-TM. Three in nine glycated sites (M68, N202, and N203) were verified to modify-two epitopes (L-HTM-3 and L-HTM-7) of α-TM, which affected the immunoreactivity of α-TM during glycation. These results indicated that glycation would be desired for developing hypo-allergenic abalone products.


Asunto(s)
Gastrópodos , Tropomiosina , Animales , Tropomiosina/genética , Gastrópodos/genética , Epítopos , Transglutaminasas , Glicopirrolato , Inmunoglobulina E
14.
J Agric Food Chem ; 70(47): 14886-14897, 2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36398610

RESUMEN

In response to physical, chemical, and/or biological stimuli, considerable tissue self-degradation occurs in abalone, causing severe post-harvest quality loss. During this process, the extracellular matrix (ECM) is greatly degraded by endogenous proteases. The main component of the ECM is collagen, primarily type I collagen. Although the activity of matrix metalloproteinases (MMPs), which can specifically degrade collagen, is precisely regulated by tissue inhibitors of MPs (TIMPs), indicating that MMPs and TIMPs play crucial roles in the regulation of tissue self-degradation, few studies have reported the interaction between MMPs and TIMPs. In this study, we reveal collagenases to participate in postmortem tissue self-degradation of Haliotis discus hannai by degrading type I collagen. The recombinant MMP-1 catalytic domain (rMMP1c) of abalone with high purity and enzyme activity is expressed using a prokaryotic expression system. The optimum temperature and pH for rMMP1c are 37 °C and 7.0, respectively. The thermal denaturation temperature of rMMP1c is 67.0 ± 0.9 °C. Ethylenediamine tetraacetic acid (EDTA) and 1,10-phenanthroline can completely inhibit rMMP1c activity, while Ba2+, Ca2+, and Mg2+ can significantly elevate it. TIMP is also expressed using HEK 293F cells. Recombinant TIMP (rTIMP) shows good inhibitory activity toward rMMP1c. Inhibition kinetics analyses reveal rTIMP to be a competitive inhibitor of rMMP1c. Biolayer interferometry reveals that rTIMP can effectively bind with rMMP1c, with an equilibrium dissociation constant value of 263 nM. rMMP1c effectively degrades type I collagen γ-ß-α chains in turn, and rTIMP can significantly inhibit rMMP1c degradation activity. These results provide a theoretical basis for the study of MMP and TIMP interaction and elucidate the possible mechanism for abalone tissue self-degradation.


Asunto(s)
Gastrópodos , Metaloproteinasa 1 de la Matriz , Animales , Metaloproteinasa 1 de la Matriz/genética , Colágeno Tipo I/genética , Metaloproteasas , Gastrópodos/genética , Inhibidores Tisulares de Metaloproteinasas
15.
Food Funct ; 13(22): 11518-11531, 2022 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-36318047

RESUMEN

The design of hypoallergenic derivatives is a new strategy for allergen-specific immunotherapy. Although hypoallergenic derivatives of Scylla paramamosain (mud crab) heat-stable tropomyosin (TM) and myosin light chain (MLC) have been preliminarily explored, their allergenicity in vivo needs to be further studied. In this work, recombinant allergens (wtTM, wtMLC) and hypoallergenic derivatives (mtTM, mtMLC) were purified. IgE-binding frequencies of wtTM and wtMLC in 177 crab-sensitised patients were 32.8% and 11.9%, respectively. In the Balb/c mouse model, mtTM and mtMLC caused mild intestinal inflammation, did not activate T-helper (Th) 2 immune response (interleukin-4, anaphylactic mediator, IgE, and IgG1 antibodies were not significantly increased) but could significantly promote the production of interleukin-10, which equilibrated Th1/Th2 cells, thus alleviating allergic symptoms. Moreover, mtTM and mtMLC-induced rabbit/mice anti-IgG antibodies could effectively block wtTM and wtMLC binding to patients' sera IgE in vitro. These results indicate that hypoallergenic derivatives offer the promise for an immunotherapeutic regimen for crab allergy.


Asunto(s)
Braquiuros , Hipersensibilidad a los Alimentos , Conejos , Ratones , Animales , Alérgenos , Ratones Endogámicos BALB C , Inmunoglobulina E , Calor , Inmunoglobulina G , Hipersensibilidad a los Alimentos/terapia
16.
J Agric Food Chem ; 70(41): 13419-13430, 2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-36205062

RESUMEN

Arginine kinase (AK) was identified as an allergen in Crassostrea angulata. However, little information is available about its epitopes. In this study, AK from C. angulata was registered to the World Health Organization/International Union of Immunological Societies allergen nomenclature committee to be named as Cra a 2. The immunoglobulin G/immunoglobulin E-binding capacity of Cra a 2 was significantly reduced after chemical denaturation treatment. Further, eight linear mimotopes and five conformational mimotopes of Cra a 2 were obtained using phage panning. In addition to six linear epitopes that have been identified, two linear epitopes were verified by a synthetic peptide, of which L-Cra a 2-2 was conserved in shellfish. Four conformational epitopes were verified by site-directed mutation, among which mutation of C-Cra a 2-1 affected the structure and reduced the immunoreactivity of Cra a 2 most significantly. Overall, the identified epitopes may lay a foundation for the development of hypoallergenic oyster products through food processing.


Asunto(s)
Arginina Quinasa , Crassostrea , Animales , Inmunoglobulina E , Alérgenos/química , Arginina Quinasa/genética , Epítopos/química , Crassostrea/genética , Secuencia de Aminoácidos , Péptidos , Inmunoglobulina G
17.
J Agric Food Chem ; 70(38): 12189-12202, 2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36110087

RESUMEN

Tropomyosin (Scy p 1) and myosin light chain (Scy p 3) are investigated to be important heat-stable allergens in Scylla paramamosain. However, the epitopes of Scy p 1 and Scy p 3 are limited. In this study, recombinant Scy p 1 and Scy p 3 had similar IgE-binding capacity to natural proteins. Mimotopes of Scy p 1 and Scy p 3 were analyzed by bioinformatics, phage display, and one-bead-one-compound technology. Ten linear epitopes of Scy p 1 and seven linear epitopes of Scy p 3 were identified by synthetic peptides and inhibition dot blot. Meanwhile, three conformational epitopes of Scy p 1 and seven conformational epitopes of Scy p 3 were verified by site-directed mutagenesis and the serological test. Furthermore, strong IgE-binding epitopes of Scy p 1 and Scy p 3 were conserved in multiple crustaceans. Overall, these epitopes could enhance our understanding of crab allergens, which lay the foundation for a cross-reaction.


Asunto(s)
Alérgenos , Braquiuros , Alérgenos/química , Secuencia de Aminoácidos , Animales , Braquiuros/química , Epítopos/química , Calor , Inmunoglobulina E , Cadenas Ligeras de Miosina , Péptidos/metabolismo , Tropomiosina/genética
18.
Sheng Wu Gong Cheng Xue Bao ; 38(9): 3173-3193, 2022 Sep 25.
Artículo en Chino | MEDLINE | ID: mdl-36151792

RESUMEN

Coronavirus disease (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), with strong contagiousness, high susceptibility and long incubation period. cell entry by SARS-CoV-2 requires the binding between the receptor-binding domain of the viral spike protein and the cellular angiotensin-converting enzyme 2 (ACE2). Here, we briefly reviewed the mechanisms underlying the interaction between SARS-CoV-2 and ACE2, and summarized the latest research progress on SARS-CoV-2 neutralizing monoclonal antibodies and nanobodies, so as to better understand the development process and drug research direction of COVID-19. This review may facilitate understanding the development of neutralizing antibody drugs for emerging infectious diseases, especially for COVID-19.


Asunto(s)
COVID-19 , Anticuerpos de Dominio Único , Enzima Convertidora de Angiotensina 2 , Anticuerpos Monoclonales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Humanos , Peptidil-Dipeptidasa A/química , Peptidil-Dipeptidasa A/metabolismo , Unión Proteica , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/metabolismo
19.
Int J Mol Sci ; 23(17)2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-36077562

RESUMEN

Antibacterial delivery emulsions are potential materials for treating bacterial infections. Few studies have focused on the role and mechanism of emulsions in inflammation relief. Therefore, based on our previous analysis, in which the novel and natural Pickering emulsions stabilized by antimicrobial peptide nanoparticles were prepared, the regulation effect of emulsion on inflammasome was explored in silico, in vitro and in vivo. Firstly, the interactions between inflammasome components and parasin I or Pickering emulsion were predicted by molecular docking. Then, the inflammasome stimulation by different doses of the emulsion was tested in RAW 264.7 and THP-1 cells. Finally, in Kunming mice with peritonitis, NLRP3 and IL-1ß expression in the peritoneum were evaluated. The results showed that the Pickering emulsion could combine with ALK, casp-1, NEK7, or NLRP3 to affect the assembly of the NLRP3 and further relieve inflammation. LPNE showed a dose-dependent inhibition effect on the release of IL-1ß and casp-1. With the concentration of parasin I increased from 1.5 mg/mL to 3 mg/mL, the LDH activity decreased in the chitosan peptide-embedded nanoparticles emulsion (CPENE) and lipid/peptide nanoparticles emulsion (LPNE) groups. However, from 1.5 to 6 mg/mL, LPNE had a dose-dependent effect on the release of casp-1. The CPENE and parasin I-conjugated chitosan nanoparticles emulsion (PCNE) may decrease the release of potassium and chloride ions. Therefore, it can be concluded that the LPNE may inhibit the activation of the inflammasome by decreasing LDH activity, potassium and chloride ions through binding with compositions of NLRP3.


Asunto(s)
Quitosano , Nanopartículas , Animales , Caspasa 1/metabolismo , Cloruros , Emulsiones/química , Emulsiones/farmacología , Inflamasomas/metabolismo , Inflamación , Ratones , Simulación del Acoplamiento Molecular , Proteína con Dominio Pirina 3 de la Familia NLR , Nanopartículas/química , Potasio
20.
Int J Mol Sci ; 23(18)2022 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-36142819

RESUMEN

The receptor-binding domain (RBD) of the SARS-CoV-2 spike protein is the major target for antibody therapeutics. Shark-derived variable domains of new antigen receptors (VNARs) are the smallest antibody fragments with flexible paratopes that can recognize protein motifs inaccessible to classical antibodies. This study reported four VNARs binders (JM-2, JM-5, JM-17, and JM-18) isolated from Chiloscyllium plagiosum immunized with SARS-CoV-2 RBD. Biolayer interferometry showed that the VNARs bound to the RBD with an affinity KD ranging from 38.5 to 2720 nM, and their Fc fusions had over ten times improved affinity. Gel filtration chromatography revealed that JM-2-Fc, JM-5-Fc, and JM-18-Fc could form stable complexes with RBD in solution. In addition, five bi-paratopic VNARs, named JM-2-5, JM-2-17, JM-2-18, JM-5-18, and JM-17-18, were constructed by fusing two VNARs targeting distinct RBD epitopes based on epitope grouping results. All these bi-paratopic VNARs except for JM-5-18 showed higher RBD binding affinities than its component VNARs, and their Fc fusions exhibited further enhanced binding affinities, with JM-2-5-Fc, JM-2-17-Fc, JM-2-18-Fc, and JM-5-18-Fc having KD values lower than 1 pM. Among these Fc fusions of bi-paratopic VNARs, JM-2-5-Fc, JM-2-17-Fc, and JM-2-18-Fc could block the angiotensin-converting enzyme 2 (ACE2) binding to the RBD of SARS-CoV-2 wildtype, Delta, Omicron, and SARS-CoV, with inhibition rates of 48.9~84.3%. Therefore, these high-affinity VNAR binders showed promise as detectors and therapeutics of COVID-19.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Tiburones , Enzima Convertidora de Angiotensina 2 , Animales , Epítopos , Humanos , Fragmentos de Inmunoglobulinas/metabolismo , Peptidil-Dipeptidasa A/metabolismo , Unión Proteica , Receptores Virales/metabolismo , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA