Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Base de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Total Environ ; 919: 170716, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38325450

RESUMEN

Microplastics (MPs) in aquatic environments provide a new ecological niche that facilitates the attachment of antibiotic-resistance genes (ARGs) and pathogens. However, the effect of particle size on the colonization of antibiotic resistomes and pathogens remains poorly understood. To address this knowledge gap, this study explored the antibiotic resistome and core microbiome on three distinct types of MPs including polyethylene, polypropylene, and polystyrene (PS), with varying sizes of 30, 200, and 3000 µm by metagenomic sequencing. Our finding showed that the ARG abundances of the PS type increased by 4-folds with increasing particle size from 30 to 3000 µm, and significant differences in ARG profiles were found across the three MP types. In addition, the concentrations of ARGs and mobile genetic elements (MGEs) were markedly higher in the MPs than in the surrounding water, indicating their enrichment at these artificial interfaces. Notably, several pathogens such as Pseudomonas aeruginosa, Mycobacterium tuberculosis, and Legionella pneumophila were enriched in MP biofilms, and the co-occurrence of ARGs and virulence factor genes (VFGs)/MGEs suggested the presence of pathogenic antibiotic-resistant microbes with potential mobility. Both redundancy analysis (RDA) and structural equation modeling (SEM) demonstrated that physicochemical properties such as zeta potential, MP size, and contact angle were the most significant contributors to the antibiotic resistome. Strikingly, no significant differences were observed in the health risk scores of the ARG profiles among different sizes and types of MPs. This study expands our knowledge on the impact of MP size on microbial risks, thus enhancing our understanding of the potential health hazards they pose.


Asunto(s)
Microbiota , Microplásticos , Antibacterianos/farmacología , Genes Bacterianos , Plásticos , Ríos , Poliestirenos/química , Polipropilenos/química
2.
Chemosphere ; 307(Pt 4): 136137, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36007748

RESUMEN

Microplastics (MPs) in ocean tides can be effectively intercepted by mangroves, especially sediments, which are considered to be effective sinks. However, the retention of plantation mangrove forests on MPs is still unclear. In this study, the spatial distribution and its implication factors of MPs in surface sediments of plantation mangrove forests were investigated for the first time. In plantation forests, MPs were detected with abundances ranging from 67 ± 21 to 203 ± 25 items/kg, and plantation forests were significantly lower than natural forests at the CJ sampling site (p < 0.05). Plantation forests had fewer fibrous MPs than natural forests (p < 0.05). Furthermore, the MPs abundance showed strong linear relationships with the sand content (p = 0.002, R2 = 0.86) and Aegiceras corniculata biomass (p = 0.001, R2 = 0.84). Partial least squares path modeling analysis (PLS-PM) indicated that these two factors influenced MPs abundance by retaining MPs with fibrous, fragmented, denser and larger-sized characteristics. Our results revealed the differences in MPs abundance and characteristics between plantation and natural mangrove forests, and it is necessary to monitor MPs pollution to provide significant guidance for the restoration of constructed wetlands.


Asunto(s)
Microplásticos , Humedales , Ecosistema , Monitoreo del Ambiente , Bosques , Sedimentos Geológicos , Plásticos , Arena
3.
Environ Res ; 210: 112939, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35157917

RESUMEN

The research on transportation of river microplastics (MPs) mainly focuses on the estimations of the total contents of river MPs entering the ocean, while the related transportation processes and influence factors were still largely unknown. In our study, the role of mangrove forest, a special tropical ecosystem in the estuary, on the transportations of MPs from rivers to ocean was explored. Except for the ND river with the absence of mangrove forest, the MPs collected from the water sample of the river upstream were much higher than their corresponding downstream (p < 0.05), with the interception rate of riverine MPs by mangrove forests ranging from 12.86% to 56% in dry season and 10.57%-42% in rainy season. The MPs with the characteristics of high density, larger size and regular shape were more easily intercepted. Furthermore, the combined effects of ecological indicators, the properties of mangrove and the hydrodynamic factors jointly determined the interception rates of MPs. This study provides a new perspective and data support for quantifying mangrove forests intercepting MPs in rivers as a factor of MPs retention in global rivers.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Ecosistema , Monitoreo del Ambiente , Plásticos , Contaminantes Químicos del Agua/análisis , Humedales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA