Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 393
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 282: 116703, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38986335

RESUMEN

3-methyl-4-nitrophenol (PNMC), a degradation product of organophosphorus insecticides and a byproduct of fuel combustion, exerting endocrine-disrupting effects. However, its impact on the meiotic process of oocytes remains unclear. In the present study, we investigated the effects of PNMC on meiotic maturation of mouse oocytes in vitro and related mechanisms. Morphologically, PNMC-exposure affected germinal vesicle breakdown (GVBD) and polar body extrusion (PBE) in mouse oocytes. Proteomic analysis suggested that PNMC-exposure altered oocyte protein expression that are associated with cytoskeleton, mitochondrial function and oxidative stress. Further studies demonstrated that PNMC-exposure disrupted spindle assembly and chromosome alignment, caused sustained activation of spindle assembly checkpoint (SAC), and arrested meiosis in oocytes. Specifically, PNMC-exposure interfered with the function of microtubule organizing centers (MTOCs) by significantly reducing phosphorylated mitogen activated protein kinase (p-MAPK) expression and disrupting the localization of Pericentrin and p-Aurora A, leading to spindle assembly failure. Besides, PNMC-exposure also increased α-tubulin acetylation, decreased microtubule stability. Moreover, PNMC-exposure impaired mitochondrial function, evidenced by abnormal mitochondrial distribution, decreased mitochondrial membrane potential and ATP levels, release of Cytochrome C into the cytoplasm, and elevated ROS levels. As a result, exposure to PNMC caused DNA damage and early apoptosis in oocytes. Fortunately, melatonin was able to promote oocyte maturation by removing the excessive ROS and enhancing mitochondrial function. These results highlight the adverse effects of PNMC on meiotic maturation, and underscore the protective role of melatonin against PNMC-induced damage.

2.
J Cancer Res Clin Oncol ; 150(7): 345, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38981872

RESUMEN

BACKGROUND: Endometrial cancer (EC) is the sixth most frequent cancer in women worldwide and has higher fatality rates. The pathophysiology of EC is complex, and there are currently no reliable methods for diagnosing and treating the condition. Long non-coding RNA (lncRNA), according to mounting evidence, is vital to the pathophysiology of EC. HOTAIR is regarded as a significant prognostic indicator of EC. ZBTB7A decreased EC proliferation and migration, according to recent studies, however the underlying mechanism still needs to be clarified. METHODS: The research utilized RT-qPCR to measure HOTAIR expression in clinical EC tissues and various EC cell lines. Kaplan-Meier survival analysis was employed to correlate HOTAIR levels with patient prognosis. Additionally, the study examined the interaction between ZBTB7A and HOTAIR using bioinformatics tools and ChIP assays. The experimental approach also involved manipulating the expression levels of HOTAIR and ZBTB7A in EC cell lines and assessing the impact on various cellular processes and gene expression. RESULTS: The study found significantly higher levels of HOTAIR in EC tissues compared to adjacent normal tissues, with high HOTAIR expression correlating with poorer survival rates and advanced cancer characteristics. EC cell lines like HEC-1 A and KLE showed higher HOTAIR levels compared to normal cells. Knockdown of HOTAIR in these cell lines reduced proliferation, angiogenesis, and migration. ZBTB7A was found to be inversely correlated with HOTAIR, and its overexpression led to a decrease in HOTAIR levels and a reduction in malignant cell behaviors. The study also uncovered that HOTAIR interacts with ELAVL1 to regulate SOX17, which in turn activates the Wnt/ß-catenin pathway, promoting malignant behaviors in EC cells. CONCLUSION: HOTAIR is a critical regulator in EC, contributing to tumor growth and poor prognosis. Its interaction with ZBTB7A and regulation of SOX17 via the Wnt/ß-catenin pathway underlines its potential as a therapeutic target.


Asunto(s)
Proliferación Celular , Proteína 1 Similar a ELAV , Neoplasias Endometriales , ARN Largo no Codificante , Factores de Transcripción SOXF , Humanos , ARN Largo no Codificante/genética , Femenino , Neoplasias Endometriales/genética , Neoplasias Endometriales/patología , Neoplasias Endometriales/metabolismo , Factores de Transcripción SOXF/genética , Factores de Transcripción SOXF/metabolismo , Proteína 1 Similar a ELAV/metabolismo , Proteína 1 Similar a ELAV/genética , Neovascularización Patológica/genética , Neovascularización Patológica/patología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Pronóstico , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Movimiento Celular/genética , Animales , Ratones , Persona de Mediana Edad , Vía de Señalización Wnt/genética , Angiogénesis
3.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(3): 559-565, 2024 May 20.
Artículo en Chino | MEDLINE | ID: mdl-38948269

RESUMEN

Objective: Infertility affects approximately one-sixth of the people of childbearing age worldwide, causing not only economic burdens of treatment for families with fertility problems but also psychological stress for patients and presenting challenges to societal and economic development. Premature ovarian insufficiency (POI) refers to the loss of ovarian function in women before the age of 40 due to the depletion of follicles or decreased quality of remaining follicles, constituting a significant cause of female infertility. In recent years, with the help of the rapid development in genetic sequencing technology, it has been demonstrated that genetic factors play a crucial role in the onset of POI. Among the population suffering from POI, genetic studies have revealed that genes involved in processes such as meiosis, DNA damage repair, and mitosis account for approximately 37.4% of all pathogenic and potentially pathogenic genes identified. FA complementation group M (FANCM) is a group of genes involved in the damage repair of DNA interstrand crosslinks (ICLs), including FANCA-FANCW. Abnormalities in the FANCM genes are associated with female infertility and FANCM gene knockout mice also exhibit phenotypes similar to those of POI. During the genetic screening of POI patients, this study identified a suspicious variant in FANCM. This study aims to explore the pathogenic mechanisms of the FANCM genes of the FA pathway and their variants in the development of POI. We hope to help shed light on potential diagnostic and therapeutic strategies for the affected individuals. Methods: One POI patient was included in the study. The inclusion criteria for POI patients were as follows: women under 40 years old exhibiting two or more instances of basal serum follicle-stimulating hormone levels>25 IU/L (with a minimum interval of 4 weeks inbetween tests), alongside clinical symptoms of menstrual disorders, normal chromosomal karyotype analysis results, and exclusion of other known diseases that can lead to ovarian dysfunction. We conducted whole-exome sequencing for the POI patient and identified pathogenic genes by classifying variants according to the standards and guidelines established by the American College of Medical Genetics and Genomics (ACMG). Subsequently, the identified variants were validated through Sanger sequencing and subjected to bioinformatics analysis. Plasmids containing wild-type and mutant FANCM genes were constructed and introduced into 293T cells. The 293T cells transfected with wild-type and mutant human FANCM plasmids and pEGFP-C1 empty vector plasmids were designated as the EGFP FANCM-WT group, the EGFP FANCM-MUT group, and the EGFP group, respectively. To validate the production of truncated proteins, cell proteins were extracted 48 hours post-transfection from the three groups and confirmed using GFP antibody. In order to investigate the impact on DNA damage repair, immunofluorescence experiments were conducted 48 hours post-transfection in the EGFP FANCM-WT group and the EGFP FANCM-MUT group to examine whether the variant affected FANCM's ability to localize on chromatin. Mitomycin C was used to induce ICLs damage in vitro in both the EGFP FANCM-WT group and the EGFP FANCM-MUT group, which was followed by verification of its effect on ICLs damage repair using γ-H2AX antibody. Results: In a POI patient from a consanguineous family, we identified a homozygous variant in the FANCM gene, c.1152-1155del:p.Leu386Valfs*10. The patient presented with primary infertility, experiencing irregular menstruation since menarche at the age of 16. Hormonal evaluation revealed an FSH level of 26.79 IU/L and an anti-Müllerian hormone (AMH) level of 0.07 ng/mL. Vaginal ultrasound indicated unsatisfactory visualization of the ovaries on both sides and uterine dysplasia. The patient's parents were a consanguineous couple, with the mother having regular menstrual cycles. The patient had two sisters, one of whom passed away due to osteosarcoma, while the other exhibited irregular menstruation, had been diagnosed with ovarian insufficiency, and remained childless. Bioinformatics analysis revealed a deletion of four nucleotides (c.1152-1155del) in the exon 6 of the patient's FANCM gene. This variant resulted in a frameshift at codon 386, introducing a premature stop codon at codon 396, which ultimately led to the production of a truncated protein consisting of 395 amino acids. In vitro experiments demonstrated that this variant led to the production of a truncated FANCM protein of approximately 43 kDa and caused a defect in its nuclear localization, with the protein being present only in the cytoplasm. Following treatment with mitomycin C, there was a significant increase in γ-H2AX levels in 293T cells transfected with the mutant plasmid (P<0.01), indicating a statistically significant impairment of DNA damage repair capability caused by this variant. Conclusions: The homozygous variant in the FANCM gene, c.1152-1155del:p.Leu386Valfs*10, results in the production of a truncated FANCM protein. This truncation leads to the loss of its interaction site with the MHF1-MHF2 complex, preventing its entry into the nucleus and the subsequent recognition of DNA damage. Consequently, the localization of the FA core complex on chromatin is disrupted, impeding the normal activation of the FA pathway and reducing the cell's ability to repair damaged ICLs. By disrupting the rapid proliferation and meiotic division processes of primordial germ cells, the reserve of oocytes is depleted, thereby triggering premature ovarian insufficiency in females.


Asunto(s)
Insuficiencia Ovárica Primaria , Femenino , Insuficiencia Ovárica Primaria/genética , Humanos , Mutación , Anemia de Fanconi/genética , Adulto , Infertilidad Femenina/genética , Infertilidad Femenina/etiología , ADN Helicasas
4.
Sci Rep ; 14(1): 15353, 2024 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-38961101

RESUMEN

Cervical cancer (CC) is the fourth most common cancer among women worldwide. NLR Family CARD Domain Containing 5 (NLRC5) plays an important role in tumorigenesis. However, its effect and mechanism in CC remains unclear. In this study, we aimed to investigate the function of NLRC5 in CC. NLRC5 was found to be down-regulated in CC tissues compared with normal cervical tissues. However, patients with higher NLRC5 expression had better prognosis, patients with higher age, HPV infection, lymph node metastasis, recurrence and histological grade had worse prognosis. Univariate and multivariate analyses showed NLRC5 to be a potential prognostic indicator for CC. Pearson correlation analysis showed that NLRC5 might exert its function in CC through autophagy related proteins, especially LC3. In vitro experiments demonstrated that NLRC5 inhibited LC3 levels and promoted the proliferation, migration, and invasion of CC cells by activating the PI3K/AKT signaling pathway. Treatment with LY294002 reversed the above phenotype. Taken together, our finding suggested that NLRC5 would participate in cervical tumorigenesis and progression by regulating PI3K/AKT signaling pathway. In addition, NLRC5 and LC3 combined as possible predictors in CC.


Asunto(s)
Proliferación Celular , Péptidos y Proteínas de Señalización Intracelular , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Neoplasias del Cuello Uterino , Humanos , Femenino , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/patología , Neoplasias del Cuello Uterino/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Persona de Mediana Edad , Proliferación Celular/genética , Línea Celular Tumoral , Pronóstico , Carcinogénesis/genética , Regulación Neoplásica de la Expresión Génica , Movimiento Celular/genética , Adulto
5.
Heliyon ; 10(12): e33132, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-39022094

RESUMEN

Background: Previous studies have shown that serotonin and its receptors are widely distributed in mammalian reproductive tisssues and play an important role in embryonic development. However, the specific effects of the serotonergic system on embryonic arrest (EA) and the underlying mechanism require further investigation. Methods: Chorionic villi were collected from patients with EA and healthy pregnant women. Western blotting (WB) and immunohistochemistry (IHC) were used to detect serotonin receptor 1B (HTR1B) levels and evaluate mitochondrial function. Additionally, HTR-8/SVneo cells were transfected with an HTR1B overexpression plasmid. Quantitative real-time polymerase chain reaction(qRT-PCR), Cell Counting Kit-8 (CCK-8), and wound healing assays were utilized to evaluate mitophagy level, cell proliferation and cell migration, respectively. Results: We discovered elevated HTR1B levels in the chorionic villi of the patients with EA compared to controls. Concurrently, we observed enhanced levels of nucleus-encoded proteins including mitofilin, succinate dehydrogenase complex subunit A (SDHA), and cytochrome c oxidase subunit 4 (COXIV), along with the mitochondrial fusion protein optic atrophy 1(OPA1), fission proteins mitochondrial fission protein 1(FIS1) and mitochondrial fission factor (MFF) in the EA group. Additionally, there was an excessive mitophagy levels in EA group. Furthermore, a notable activation of mitogen-activated protein kinase (MAPK) signaling pathway proteins including extracellular regulating kinase (ERK), c-Jun N-terminal kinase (JNK), and P38 was observed in the EA group. By overexpressing HTR1B in HTR-8/SVneo cells, we observed a significant reduction in cell proliferation and migration. HTR1B overexpression also caused an increase in levels of SDHA and FIS1, as well as an upregulation of mitophagy. Notably, the ERK inhibitor U0126 effectively mitigated these effects. Conclusion: These findings show that HTR1B influences mitochondrial homeostasis, promoting excessive mitophagy and impairing cell proliferation and migration by activating the MAPK signalling pathway during post-implantation EA. Therefore, HTR1B may serve as a potential therapeutic target for patients with EA.

6.
Heliyon ; 10(11): e32466, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38933958

RESUMEN

Sirtuin 5 (Sirt5), a member of the Sirtuin family, is involved in various intracellular biological processes. However, the function of Sirt5 in oocyte maturation has not been clearly elucidated. In this study, we observed that Sirt5 was persistently expressed during the meiotic division of mouse oocytes, with a notable decline in expression in aging oocytes. Sirt5 inhibition led to the failure of the first polar body extrusion and induced cell cycle arrest, indicative of unsuccessful oocyte maturation. Furthermore, Sirt5 inhibition was associated with the extrusion of abnormally large polar bodies, suggesting disrupted asymmetric oocyte division. Mechanistically, the inhibition of Sirt5 resulted in aberrant spindle assembly and disordered chromosome alignment in oocytes. Moreover, Sirt5 inhibition caused the spindle to be centrally located in the oocyte without migrating to the cortical region, consequently preventing the formation of the actin cap. Further investigation revealed that Sirt5 inhibition notably diminished the expression of phosphorylated cofilin and profilin1, while increasing cytoplasmic F-actin levels. These findings suggest that Sirt5 inhibition during oocyte maturation adversely affects spindle assembly and chromosome alignment and disrupts actin dynamics impairing spindle migration and contributing to the failure of symmetric oocyte division and maturation.

7.
Andrology ; 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38847152

RESUMEN

BACKGROUND: PiRNA pathway factors, including evolutionarily conserved Tudor domain-containing proteins, play crucial roles in suppressing transposons and regulating post-meiotic gene expression. TDRD5 is essential for retrotransposon silencing and pachytene piRNA biogenesis; however, a causal link between TDRD5 variants and human infertility has not yet been established. OBJECTIVE: To identify the likely pathogenic variants of TDRD5 in infertile men, characterised by azoospermia or severe oligozoospermia. MATERIAL AND METHODS: Potential candidate variants were identified and confirmed using whole-exome and Sanger sequencing. Haematoxylin and eosin staining, immunofluorescence, and ultrastructural analyses were performed to investigate the structural and functional abnormalities of spermatozoa. The pathogenicity of the identified TDRD5 variants was verified using in vitro experiments. Functional effects of the C-terminal nonsense variant were assessed via histology, immunofluorescence staining, and small-RNA sequencing. Intracytoplasmic sperm injection (ICSI) was also performed to evaluate the efficacy of the clinical treatment. RESULTS: We identified a homozygous missense variant (c.3043G > A, p.A1015T) and a homozygous nonsense variant (c.2293G > T, p.E765*) of TDRD5 in two unrelated infertile men. Both patients exhibited severe oligoasthenoteratozoospermia, characterised by the presence of spermatozoa with multiple heads and/or flagella, as well as acrosomal hypoplasia. In vitro experiments revealed that the p.A1015T variant caused a diffuse distribution of TDRD5 granules, whereas the p.E765* variant led to the production of a C-terminal truncated protein with nuclear localisation, instead of the typical cytoplasmic localisation observed for the wild-type protein. Functional investigations also revealed that truncation of the C-terminal region of TDRD5 could potentially lead to a decline in the expression levels of intermitochondrial cement and chromatoid body components, such as MIWI (PIWIL1) and UPF1, and a slight decrease in the abundance of pachytene piRNA, ultimately resulting in compromised spermiogenesis. ICSI may be an effective treatment for these deficiencies. DISCUSSION AND CONCLUSION: This study implicates TDRD5 as a novel candidate gene in the pathogenesis of human male infertility, emphasising the contribution of piRNA pathway genes to male infertility. In addition, our data suggest that ICSI could be a promising treatment for infertile men harbouring TDRD5 variants.

8.
Reprod Sci ; 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38867036

RESUMEN

In the world, about 15% of couples are infertile, and nearly half of all infertility was caused by men. A large number of genetic mutations are thought to affect spermatogenesis by regulating acrosome formation. Here, we identified three patients harbouring the protein interacting with cyclin A1 (PROCA1) mutation by whole exome sequencing (WES) and Sanger sequencing among patients with predominantly acrosome-deficient teratozoospermia. However, the expression and roles of PROCA1 in infertile men remain unclear. We found that PROCA1 is predominantly expressed in the testis, where it is specifically localized to the acrosome of normal human sperm. Proca1 knockout (KO) mice were subsequently generated using CRISPR-Cas9 technology. However, Proca1 KO adult male mice were fertile, with testis-to-body weight ratios comparable to those of wild-type (WT) mice. Testicular tissue or sperm morphology were not significantly different in Proca1 KO mice compared to WT mice. Expression of the acrosome markers PNA and SP56 in the acrosome was comparable between Proca1 KO and WT mice. In summary, these findings suggested that the PROCA1 mutation identified in humans does not affect acrosome biogenesis in mice.

9.
Drug Des Devel Ther ; 18: 2203-2213, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38882047

RESUMEN

Mitochondrial carrier homolog 2 (MTCH2) is a member of the solute carrier 25 family, located on the outer mitochondrial membrane. MTCH2 was first identified in 2000. The development in MTCH2 research is rapidly increasing. The most well-known role of MTCH2 is linking to the pro-apoptosis BID to facilitate mitochondrial apoptosis. Genetic variants in MTCH2 have been investigated for their association with metabolic and neurodegenerative diseases, however, no intervention or therapeutic suggestions were provided. Recent studies revealed the physiological and pathological function of MTCH2 in metabolic diseases, neurodegenerative diseases, cancers, embryonic development and reproduction via regulating mitochondrial apoptosis, metabolic shift between glycolysis and oxidative phosphorylation, mitochondrial fusion/fission, epithelial-mesenchymal transition, etc. This review endeavors to assess a total of 131 published articles to summarise the structure and physiological/pathological role of MTCH2, which has not previously been conducted. This review concludes that MTCH2 plays a crucial role in metabolic diseases, neurodegenerative diseases, cancers, embryonic development and reproduction, and the predominant molecular mechanism is regulation of mitochondrial function. This review gives a comprehensive state of current knowledgement on MTCH2, which will promote the therapeutic research of MTCH2.


Asunto(s)
Desarrollo Embrionario , Enfermedades Metabólicas , Neoplasias , Enfermedades Neurodegenerativas , Reproducción , Humanos , Enfermedades Neurodegenerativas/metabolismo , Neoplasias/metabolismo , Neoplasias/patología , Enfermedades Metabólicas/metabolismo , Animales , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo
10.
J Genet Genomics ; 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38909778

RESUMEN

Oligoasthenoteratozoospermia is an important factor affecting male fertility and has been found to be associated with genetic factors. However, there are still a proportion of oligoasthenoteratozoospermia cases that cannot be explained by known pathogenic genetic variants. Here, we perform genetic analyses and identify bi-allelic loss-of-function variants of MFSD6L from an oligoasthenoteratozoospermia-affected family. Mfsd6l knock-out male mice also present male subfertility with reduced sperm concentration, motility, and deformed acrosomes. Further mechanistic analyses reveal that MFSD6L, as an acrosome membrane protein, plays an important role in the formation of acrosome by interacting with the inner acrosomal membrane protein SPACA1. Moreover, poor embryonic development is consistently observed after intracytoplasmic sperm injection treatment using spermatozoa from the MFSD6L-deficient man and male mice. Collectively, our findings reveal that MFSD6L is required for the anchoring of sperm acrosome and head shaping. The deficiency of MFSD6L affects male fertility and causes oligoasthenoteratozoospermia in humans and mice.

11.
Mol Biol Rep ; 51(1): 654, 2024 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-38735002

RESUMEN

BACKGROUND: Cervical cancer is a common gynecologic malignant tumor, but the critical factors affecting cervical cancer progression are still not well demonstrated. Mesencephalic astrocyte-derived neurotrophic factor (MANF) has been widely recognized as an anti-inflammatory factor to regulate macrophage polarization. In this study, the effect and mechanism of MANF on cervical cancer were preliminarily explored. METHODS AND RESULTS: Kaplan-Meier curve was used to show the overall survival time of the involved cervical cancer patients with high and low MANF expression in cervical cancer tissues. MANF was highly expressed in peritumoral tissues of cervical carcinoma by using immunohistochemistry and western blot. MANF mRNA level was detected by using qRT-PCR. Dual-labeled immunofluorescence showed MANF was mainly expressed in macrophages of cervical peritumoral tissues. Moreover, MANF-silenced macrophages promoted HeLa and SiHa cells survival, migration, invasion and EMT via NF-κB signaling activation. The results of tumor formation in nude mice indicated MANF-silenced macrophages promoted cervical tumor formation in vivo. CONCLUSION: Our study reveals an inhibitory role of MANF in cervical cancer progression, indicating MANF as a new and valuable therapeutic target for cervical cancer treatment.


Asunto(s)
Macrófagos , Factores de Crecimiento Nervioso , Neoplasias del Cuello Uterino , Animales , Femenino , Humanos , Ratones , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular , Progresión de la Enfermedad , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica , Células HeLa , Macrófagos/metabolismo , Ratones Desnudos , Factores de Crecimiento Nervioso/metabolismo , Factores de Crecimiento Nervioso/genética , FN-kappa B/metabolismo , Fenotipo , Transducción de Señal , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/patología , Neoplasias del Cuello Uterino/metabolismo
12.
Biol Trace Elem Res ; 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38789898

RESUMEN

Polycystic ovary syndrome (PCOS) severely affects women's fertility and accompanies serious metabolic disturbances, affecting 5%-20% of women of reproductive age globally. We previously found that exposure to toxic metals in the blood raised the risk of PCOS, but the association between exposure to toxic metals and the risk of PCOS in the follicular fluid, the microenvironment for oocyte growth and development in females, and its effect on metabolism has not been reported. This study aimed to evaluate the associations between the concentrations of cadmium (Cd), mercury (Hg), barium (Ba) and arsenic (As) in FF and the risk of PCOS, and to explore the mediating effect of metabolic markers in FF on the above relationship. We conducted a case-control study, including 557 women with PCOS and 651 controls. Ba, Cd, Hg and As levels in FF were measured by ICP-MS, metabolites levels in FF was measured by LC-MS/MS among 168 participants randomly selected from all the participants. Logistic regression models were used to assess the association of a single metal level with the PCOS risk, and linear regression models were used to assess the relationships of a single metal level with clinical phenotype parameters and metabolites levels. Combined effect of metals mixture levels on the risk of PCOS were assessed via weighted quantile sum (WQS) regression and bayesian kernel machine regression (BKMR). Medication analysis was performed to explore the role of metabolic markers on the relationship of toxic metals levels with the risk of PCOS. The exposure levels of Cd, Hg, Ba and As in FF were all positively and significantly associated with the PCOS risk (with respect to the highest vs. lowest tertile group: OR = 1.57, 95% CI = 1.17 ~ 2.12 for Cd, OR = 1.69, 95% CI = 1.22 ~ 2.34 for Hg, OR = 1.76, 95% CI = 1.32 ~ 2.34 for Ba, OR = 1.42, 95% CI = 1.05 ~ 1.91 for As). In addition, levels of metal mixture also significantly correlated with the risk of PCOS, Cd level contributed most to it. Moreover, we observed significant positive relationships between Cd level and LH (ß = 0.048, 95% CI = 0.002 ~ 0.094), T (ß = 0.077, 95% CI = 0.029 ~ 0.125) and HOMA-IR value (ß = 0.060, 95% CI = 0.012 ~ 0.107), as well as Hg level with LH, FSH/LH ratio and TC. Furthermore, we revealed that estrone sulfate, LysoPE 22:6 and N-Undecanoylglycine were significantly and positively mediating the association between Cd level and the risk of PCOS (with mediated proportion of 0.39, 0.24 and 0.35, respectively), and between Hg level and the risk of PCOS (with mediated proportion of 0.29, 0.20 and 0.46, respectively). These highly expressed metabolites significantly enriched in the fatty acid oxidation, steroid hormone biosynthesis and glycerophospholipids metabolism, which may explain the reason why the levels of Cd and Hg in FF associated with the phenotype of PCOS. Ba and As in FF was not found the above phenomenon. Our results suggested that exposure to multiple toxic metals (Cd, Hg, Ba and As) in FF associated with the increased risk of PCOS, Cd was a major contributor. Levels of Cd and Hg in FF significantly associated with the phenotype of PCOS. The above association may result from that Cd and Hg in FF related with the disturbance of fatty acid oxidation, steroid hormone biosynthesis and the glycerophospholipids metabolism.

13.
Cell Mol Biol Lett ; 29(1): 68, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38730334

RESUMEN

BACKGROUND: Members of the nucleotide-binding oligomerization domain, leucine rich repeat and pyrin domain containing (NLRP) family regulate various physiological and pathological processes. However, none have been shown to regulate actin cap formation or spindle translocation during the asymmetric division of oocyte meiosis I. NLRP4E has been reported as a candidate protein in female fertility, but its function is unknown. METHODS: Immunofluorescence, reverse transcription polymerase chain reaction (RT-PCR), and western blotting were employed to examine the localization and expression levels of NLRP4E and related proteins in mouse oocytes. small interfering RNA (siRNA) and antibody transfection were used to knock down NLRP4E and other proteins. Immunoprecipitation (IP)-mass spectrometry was used to identify the potential proteins interacting with NLRP4E. Coimmunoprecipitation (Co-IP) was used to verify the protein interactions. Wild type (WT) or mutant NLRP4E messenger RNA (mRNA) was injected into oocytes for rescue experiments. In vitro phosphorylation was employed to examine the activation of steroid receptor coactivator (SRC) by NLRP4E. RESULTS: NLRP4E was more predominant within oocytes compared with other NLRP4 members. NLRP4E knockdown significantly inhibited actin cap formation and spindle translocation toward the cap region, resulting in the failure of polar body extrusion at the end of meiosis I. Mechanistically, GRIN1, and GANO1 activated NLRP4E by phosphorylation at Ser429 and Thr430; p-NLRP4E is translocated and is accumulated in the actin cap region during spindle translocation. Next, we found that p-NLRP4E directly phosphorylated SRC at Tyr418, while p-SRC negatively regulated p-CDC42-S71, an inactive form of CDC42 that promotes actin cap formation and spindle translocation in the GTP-bound form. CONCLUSIONS: NLRP4E activated by GRIN1 and GANO1 regulates actin cap formation and spindle translocation toward the cap region through upregulation of p-SRC-Tyr418 and downregulation of p-CDC42-S71 during meiosis I.


Asunto(s)
Actinas , Meiosis , Oocitos , Proteína de Unión al GTP cdc42 , Animales , Oocitos/metabolismo , Ratones , Femenino , Actinas/metabolismo , Actinas/genética , Proteína de Unión al GTP cdc42/metabolismo , Proteína de Unión al GTP cdc42/genética , Fosforilación , Huso Acromático/metabolismo
14.
Cancer Med ; 13(10): e7216, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38752451

RESUMEN

BACKGROUND: To find the factors impacting overall survival (OS) prognosis in patients with endometrioid endometrial carcinoma (EEC) and adenocarcinoma and to establish a nomogram model to validate the 2023 International Federation of Obstetrics and Gynecology (FIGO) staging system for endometrial cancer. METHODS: Data were obtained from the Surveillance, Epidemiology, and End Results (SEER) training cohort. An independent validation cohort was obtained from the First Affiliated Hospital of Anhui Medical University between 2008 and 2023. Cox regression analysis identified independent prognostic factors for OS in EEC and adenocarcinoma patients. A nomogram predicting OS was developed and validated utilizing the C-index, calibration curves, receiver operating characteristic (ROC) curves, and decision curve analysis (DCA). The relationship between the tumor grade and prognosis of EEC and adenocarcinoma was quantified using net reclassification improvement (NRI), propensity score matching (PSM), and Kaplan-Meier curves. RESULTS: Cox regression analysis identified age, race, marital status, tumor grade, tumor stage, tumor size, and chemotherapy as independent prognostic factors for OS. A nomogram for predicting OS was developed based on these factors. The C-indexes for the OS nomogram was 0.743 and 0.720 for the SEER training set and external validation set, respectively. The area under the ROC (AUC) for the OS nomogram was 0.755, 0.757, and 0.741 for the SEER data subsets and 0.844, 0.719, and 0.743 for the external validation subsets. Calibration plots showed high concordance between the nomogram-predicted and observed OS. DCA also demonstrated the clinical utility of the OS nomogram. NRI, PSM, and survival analyses revealed that tumor grade was the most important histopathological factor for EEC and adenocarcinoma prognosis. CONCLUSION: Seven independent prognostic variables for the OS of patients with EEC and adenocarcinoma were identified. The established OS nomogram has good predictive ability and clinical utility and validates the 2023 endometrial cancer FIGO staging system.


Asunto(s)
Adenocarcinoma , Carcinoma Endometrioide , Neoplasias Endometriales , Estadificación de Neoplasias , Nomogramas , Programa de VERF , Humanos , Femenino , Neoplasias Endometriales/patología , Neoplasias Endometriales/mortalidad , Persona de Mediana Edad , Carcinoma Endometrioide/patología , Carcinoma Endometrioide/mortalidad , Adenocarcinoma/patología , Adenocarcinoma/mortalidad , Anciano , Pronóstico , Curva ROC , Clasificación del Tumor , Adulto , Estimación de Kaplan-Meier
15.
BMC Microbiol ; 24(1): 169, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760705

RESUMEN

BACKGROUND: Polycystic ovary syndrome (PCOS) is an endocrinopathy in childbearing-age females which can cause many complications, such as diabetes, obesity, and dyslipidemia. The metabolic disorders in patients with PCOS were linked to gut microbial dysbiosis. However, the correlation between the gut microbial community and dyslipidemia in PCOS remains unillustrated. Our study elucidated the different gut microbiota in patients with PCOS and dyslipidemia (PCOS.D) compared to those with only PCOS and healthy women. RESULTS: In total, 18 patients with PCOS, 16 healthy females, and 18 patients with PCOS.D were enrolled. The 16 S rRNA sequencing in V3-V4 region was utilized for identifying the gut microbiota, which analyzes species annotation, community diversity, and community functions. Our results showed that the ß diversity of gut microbiota did not differ significantly among the three groups. Regarding gut microbiota dysbiosis, patients with PCOS showed a decreased abundance of Proteobacteria, and patients with PCOS.D showed an increased abundance of Bacteroidota compared to other groups. With respect to the gut microbial imbalance at genus level, the PCOS.D group showed a higher abundance of Clostridium_sensu_stricto_1 compared to other two groups. Furthermore, the abundances of Faecalibacterium and Holdemanella were lower in the PCOS.D than those in the PCOS group. Several genera, including Faecalibacterium and Holdemanella, were negatively correlated with the lipid profiles. Pseudomonas was negatively correlated with luteinizing hormone levels. Using PICRUSt analysis, the gut microbiota community functions suggested that certain metabolic pathways (e.g., amino acids, glycolysis, and lipid) were altered in PCOS.D patients as compared to those in PCOS patients. CONCLUSIONS: The gut microbiota characterizations in patients with PCOS.D differ from those in patients with PCOS and controls, and those might also be related to clinical parameters. This may have the potential to become an alternative therapy to regulate the clinical lipid levels of patients with PCOS in the future.


Asunto(s)
Bacterias , Disbiosis , Dislipidemias , Microbioma Gastrointestinal , Síndrome del Ovario Poliquístico , ARN Ribosómico 16S , Humanos , Síndrome del Ovario Poliquístico/microbiología , Femenino , Dislipidemias/microbiología , Adulto , Disbiosis/microbiología , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , ARN Ribosómico 16S/genética , Adulto Joven , Heces/microbiología
17.
Reprod Biomed Online ; 49(2): 103912, 2024 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-38810314

RESUMEN

RESEARCH QUESTION: What are the metabolic characteristics of follicular fluid in patients with ovarian endometriosis undergoing IVF? DESIGN: This was an exploratory cohort study on endometriosis. In total, 19 infertile patients with ovarian endometriosis diagnosed by laparoscopy, and 23 controls matched in terms of age and body mass index (women with infertility due to male or tubal factors) were enrolled in this study. All patients underwent IVF treatment with a gonadotrophin-releasing hormone antagonist protocol, and follicular fluid was collected at oocyte retrieval. The metabolomics of follicular fluid samples was analysed using an ultra-high-performance liquid chromatography Orbitrap Exploris mass spectrometer (UHPLC-OE-MS). The best combination of biomarkers was selected by performing stepwise logistic regression analysis with backward elimination. RESULTS: Fifteen metabolites were identified as biomarkers associated with endometriosis. A final model containing 8-hydroxy-2-deoxyguanosine, biotin, n-acetyl-L-methionine and n-methylnicotinamide was constructed. Receiver operating characteristic analysis confirmed the value of these parameters in diagnosing endometriosis, with sensitivity of 94.7% and specificity of 95.7%. Enrichment analysis via the Kyoto Encyclopedia of Genes and Genome showed that 15 metabolites were enriched in eight metabolic pathways. CONCLUSION: Metabolomics based on UHPLC-OE-MS effectively characterized the metabolomics analysis of follicular fluid in patients with ovarian endometriosis. These findings may provide a new basis for better understanding of how diseases progress, and for the discovery of new biomarkers.

18.
Sci China Life Sci ; 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38761355

RESUMEN

The complexities of energy transfer mechanisms in the flagella of mammalian sperm flagella have been intensively investigated and demonstrate significant diversity across species. Enzymatic shuttles, particularly adenylate kinase (AK) and creatine kinase (CK), are pivotal in the efficient transfer of intracellular ATP, showing distinct tissue- and species-specificity. Here, the expression profiles of AK and CK were investigated in mice and found to fall into four subgroups, of which Subgroup III AKs were observed to be unique to the male reproductive system and conserved across chordates. Both AK8 and AK9 were found to be indispensable to male reproduction after analysis of an infertile male cohort. Knockout mouse models showed that AK8 and AK9 were central to promoting sperm motility. Immunoprecipitation combined with mass spectrometry revealed that AK8 and AK9 interact with the radial spoke (RS) of the axoneme. Examination of various human and mouse sperm samples with substructural damage, including the presence of multiple RS subunits, showed that the head of radial spoke 3 acts as an adapter for AK9 in the flagellar axoneme. Using an ATP probe together with metabolomic analysis, it was found that AK8 and AK9 cooperatively regulated ATP transfer in the axoneme, and were concentrated at sites associated with energy consumption in the flagellum. These findings indicate a novel function for RS beyond its structural role, namely, the regulation of ATP transfer. In conclusion, the results expand the functional spectrum of AK proteins and suggest a fresh model regarding ATP transfer within mammalian flagella.

19.
Sci Rep ; 14(1): 12447, 2024 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-38822039

RESUMEN

The innate immune molecule NLR family CARD domain-containing 5 (NLRC5) plays a significant role in endometrial carcinoma (EC) immunosurveillance. However, NLRC5 also plays a protumor role in EC cells. Mismatch repair gene deficiency (dMMR) can enable tumors to grow faster and also can exhibit high sensitivity to immune checkpoint inhibitors. In this study, we attempted to determine whether NLRC5-mediated protumor role in EC is via the regulation of dMMR. Our findings revealed that NLRC5 promoted the proliferation, migration, and invasion abilities of EC cells and induced the dMMR status of EC in vivo and in vitro. Furthermore, the mechanism underlying NLRC5 regulated dMMR was also verified. We first found NLRC5 could suppress nuclear factor-kappaB (NF-κB) pathway in EC cells. Then we validated that the positive effect of NLRC5 in dMMR was restricted when NF-κB was activated by lipopolysaccharides in NLRC5-overexpression EC cell lines. In conclusion, our present study confirmed the novel NLRC5/NF-κB/MMR regulatory mechanism of the protumor effect of NLRC5 on EC cells, thereby suggesting that the NLRC5-mediated protumor in EC was depend on the function of MMR.


Asunto(s)
Proliferación Celular , Neoplasias Endometriales , Péptidos y Proteínas de Señalización Intracelular , FN-kappa B , Transducción de Señal , Humanos , Femenino , FN-kappa B/metabolismo , Neoplasias Endometriales/genética , Neoplasias Endometriales/patología , Neoplasias Endometriales/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Línea Celular Tumoral , Animales , Movimiento Celular/genética , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Ratones , Síndromes Neoplásicos Hereditarios/genética , Síndromes Neoplásicos Hereditarios/metabolismo , Síndromes Neoplásicos Hereditarios/patología , Reparación de la Incompatibilidad de ADN , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Neoplasias Encefálicas
20.
Toxicol In Vitro ; 98: 105834, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38657713

RESUMEN

Triphenyltin chloride (TPTCL) is widely used in various industrial and agricultural applications. This study aimed to elucidate the mechanisms underlying the toxicological effects of TPTCL on oocytes. The obtained findings revealed that TPTCL exposure reduced polar body extrusion (PBE) and induced meiotic arrest. Mechanistically, TPTCL disrupted meiotic spindle assembly and chromosome alignment. Further analysis indicated a significant decrease in p-MAPK expression, and disturbances in the localization of Pericentrin and p-Aurora A in TPTCL exposed oocytes, which suggesting impaired microtubule organizing center (MTOC)function. Moreover, TPTCL exposure enhance microtubule acetylation and microtubule instability. Therefore, the spindle assembly checkpoint (SAC) remained activated, and the activity of the anaphase-promoting complex (APC) was inhibited, thereby preventing oocytes from progressing into the entering anaphase I (AI) stage. TPTCL exposure also augmented the actin filaments in the cytoplasm. Notably, mitochondrial function appeared unaffected by TPTCL, as evidenced indicated by stable mitochondrial membrane potential and ATP content. Furthermore, TPTCL treatment altered H3K27me2, H3K27me3 and H3K9me3 levels, suggesting changes in epigenetic modifications in oocytes. Taken together, our results suggest that TPTCL disrupts cytoskeleton assembly, continuously activates SAC, inhibits APC activity, and blocks meiotic progression, ultimately impair oocyte maturation.


Asunto(s)
Citoesqueleto , Meiosis , Oocitos , Compuestos Orgánicos de Estaño , Animales , Oocitos/efectos de los fármacos , Meiosis/efectos de los fármacos , Femenino , Citoesqueleto/efectos de los fármacos , Compuestos Orgánicos de Estaño/toxicidad , Ratones , Ratones Endogámicos ICR , Ciclo Celular/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA