Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Am Soc Nephrol ; 34(6): 1105-1119, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36995132

RESUMEN

SIGNIFICANCE STATEMENT: Congenital obstructive uropathy (COU) is a prevalent human developmental defect with highly heterogeneous clinical presentations and outcomes. Genetics may refine diagnosis, prognosis, and treatment, but the genomic architecture of COU is largely unknown. Comprehensive genomic screening study of 733 cases with three distinct COU subphenotypes revealed disease etiology in 10.0% of them. We detected no significant differences in the overall diagnostic yield among COU subphenotypes, with characteristic variable expressivity of several mutant genes. Our findings therefore may legitimize a genetic first diagnostic approach for COU, especially when burdening clinical and imaging characterization is not complete or available. BACKGROUND: Congenital obstructive uropathy (COU) is a common cause of developmental defects of the urinary tract, with heterogeneous clinical presentation and outcome. Genetic analysis has the potential to elucidate the underlying diagnosis and help risk stratification. METHODS: We performed a comprehensive genomic screen of 733 independent COU cases, which consisted of individuals with ureteropelvic junction obstruction ( n =321), ureterovesical junction obstruction/congenital megaureter ( n =178), and COU not otherwise specified (COU-NOS; n =234). RESULTS: We identified pathogenic single nucleotide variants (SNVs) in 53 (7.2%) cases and genomic disorders (GDs) in 23 (3.1%) cases. We detected no significant differences in the overall diagnostic yield between COU sub-phenotypes, and pathogenic SNVs in several genes were associated to any of the three categories. Hence, although COU may appear phenotypically heterogeneous, COU phenotypes are likely to share common molecular bases. On the other hand, mutations in TNXB were more often identified in COU-NOS cases, demonstrating the diagnostic challenge in discriminating COU from hydronephrosis secondary to vesicoureteral reflux, particularly when diagnostic imaging is incomplete. Pathogenic SNVs in only six genes were found in more than one individual, supporting high genetic heterogeneity. Finally, convergence between data on SNVs and GDs suggest MYH11 as a dosage-sensitive gene possibly correlating with severity of COU. CONCLUSIONS: We established a genomic diagnosis in 10.0% of COU individuals. The findings underscore the urgent need to identify novel genetic susceptibility factors to COU to better define the natural history of the remaining 90% of cases without a molecular diagnosis.


Asunto(s)
Hidronefrosis , Obstrucción Ureteral , Reflujo Vesicoureteral , Humanos , Variaciones en el Número de Copia de ADN , Obstrucción Ureteral/complicaciones , Obstrucción Ureteral/genética , Reflujo Vesicoureteral/diagnóstico , Reflujo Vesicoureteral/genética , Pelvis Renal/patología
3.
Nat Genet ; 51(1): 117-127, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30578417

RESUMEN

Congenital anomalies of the kidney and urinary tract (CAKUT) are a major cause of pediatric kidney failure. We performed a genome-wide analysis of copy number variants (CNVs) in 2,824 cases and 21,498 controls. Affected individuals carried a significant burden of rare exonic (that is, affecting coding regions) CNVs and were enriched for known genomic disorders (GD). Kidney anomaly (KA) cases were most enriched for exonic CNVs, encompassing GD-CNVs and novel deletions; obstructive uropathy (OU) had a lower CNV burden and an intermediate prevalence of GD-CNVs; and vesicoureteral reflux (VUR) had the fewest GD-CNVs but was enriched for novel exonic CNVs, particularly duplications. Six loci (1q21, 4p16.1-p16.3, 16p11.2, 16p13.11, 17q12 and 22q11.2) accounted for 65% of patients with GD-CNVs. Deletions at 17q12, 4p16.1-p16.3 and 22q11.2 were specific for KA; the 16p11.2 locus showed extensive pleiotropy. Using a multidisciplinary approach, we identified TBX6 as a driver for the CAKUT subphenotypes in the 16p11.2 microdeletion syndrome.


Asunto(s)
Variaciones en el Número de Copia de ADN/genética , Riñón/anomalías , Sistema Urinario/anomalías , Anomalías Urogenitales/genética , Reflujo Vesicoureteral/genética , Deleción Cromosómica , Femenino , Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo/métodos , Humanos , Masculino
5.
Am J Hum Genet ; 101(5): 789-802, 2017 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-29100090

RESUMEN

Renal agenesis and hypodysplasia (RHD) are major causes of pediatric chronic kidney disease and are highly genetically heterogeneous. We conducted whole-exome sequencing in 202 case subjects with RHD and identified diagnostic mutations in genes known to be associated with RHD in 7/202 case subjects. In an additional affected individual with RHD and a congenital heart defect, we found a homozygous loss-of-function (LOF) variant in SLIT3, recapitulating phenotypes reported with Slit3 inactivation in the mouse. To identify genes associated with RHD, we performed an exome-wide association study with 195 unresolved case subjects and 6,905 control subjects. The top signal resided in GREB1L, a gene implicated previously in Hoxb1 and Shha signaling in zebrafish. The significance of the association, which was p = 2.0 × 10-5 for novel LOF, increased to p = 4.1 × 10-6 for LOF and deleterious missense variants combined, and augmented further after accounting for segregation and de novo inheritance of rare variants (joint p = 2.3 × 10-7). Finally, CRISPR/Cas9 disruption or knockdown of greb1l in zebrafish caused specific pronephric defects, which were rescued by wild-type human GREB1L mRNA, but not mRNA containing alleles identified in case subjects. Together, our study provides insight into the genetic landscape of kidney malformations in humans, presents multiple candidates, and identifies SLIT3 and GREB1L as genes implicated in the pathogenesis of RHD.


Asunto(s)
Anomalías Congénitas/genética , Exoma/genética , Enfermedades Renales/congénito , Riñón/anomalías , Mutación/genética , Proteínas de Neoplasias/genética , Alelos , Animales , Estudios de Casos y Controles , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Femenino , Heterogeneidad Genética , Estudio de Asociación del Genoma Completo/métodos , Genotipo , Herencia/genética , Homocigoto , Humanos , Enfermedades Renales/genética , Masculino , Proteínas de la Membrana/genética , Ratones , Fenotipo , ARN Largo no Codificante/genética , Sistema Urinario/anomalías , Anomalías Urogenitales/genética , Pez Cebra
6.
Int J Mol Sci ; 18(4)2017 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-28398236

RESUMEN

Congenital anomalies of the kidney and urinary tract (CAKUT) are the most frequent form of malformation at birth and represent the cause of 40-50% of pediatric and 7% of adult end-stage renal disease worldwide. The pathogenesis of CAKUT is based on the disturbance of normal nephrogenesis, secondary to environmental and genetic causes. Often CAKUT is the first clinical manifestation of a complex systemic disease, so an early molecular diagnosis can help the physician identify other subtle clinical manifestations, significantly affecting the management and prognosis of patients. The number of sporadic CAKUT cases explained by highly penetrant mutations in a single gene may have been overestimated over the years and a genetic diagnosis is missed in most cases, hence the importance of identifying new genetic approaches which can help unraveling the vast majority of unexplained CAKUT cases. The aim of our review is to clarify the current state of play and the future perspectives of the genetic bases of CAKUT.


Asunto(s)
Predisposición Genética a la Enfermedad/genética , Riñón/metabolismo , Sistema Urinario/metabolismo , Anomalías Urogenitales/genética , Animales , Regulación de la Expresión Génica , Pruebas Genéticas/métodos , Pruebas Genéticas/tendencias , Estudio de Asociación del Genoma Completo/métodos , Estudio de Asociación del Genoma Completo/tendencias , Humanos , Riñón/anomalías , Mutación , Sistema Urinario/anomalías , Anomalías Urogenitales/diagnóstico
7.
N Engl J Med ; 376(8): 742-754, 2017 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-28121514

RESUMEN

BACKGROUND: The DiGeorge syndrome, the most common of the microdeletion syndromes, affects multiple organs, including the heart, the nervous system, and the kidney. It is caused by deletions on chromosome 22q11.2; the genetic driver of the kidney defects is unknown. METHODS: We conducted a genomewide search for structural variants in two cohorts: 2080 patients with congenital kidney and urinary tract anomalies and 22,094 controls. We performed exome and targeted resequencing in samples obtained from 586 additional patients with congenital kidney anomalies. We also carried out functional studies using zebrafish and mice. RESULTS: We identified heterozygous deletions of 22q11.2 in 1.1% of the patients with congenital kidney anomalies and in 0.01% of population controls (odds ratio, 81.5; P=4.5×10-14). We localized the main drivers of renal disease in the DiGeorge syndrome to a 370-kb region containing nine genes. In zebrafish embryos, an induced loss of function in snap29, aifm3, and crkl resulted in renal defects; the loss of crkl alone was sufficient to induce defects. Five of 586 patients with congenital urinary anomalies had newly identified, heterozygous protein-altering variants, including a premature termination codon, in CRKL. The inactivation of Crkl in the mouse model induced developmental defects similar to those observed in patients with congenital urinary anomalies. CONCLUSIONS: We identified a recurrent 370-kb deletion at the 22q11.2 locus as a driver of kidney defects in the DiGeorge syndrome and in sporadic congenital kidney and urinary tract anomalies. Of the nine genes at this locus, SNAP29, AIFM3, and CRKL appear to be critical to the phenotype, with haploinsufficiency of CRKL emerging as the main genetic driver. (Funded by the National Institutes of Health and others.).


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Deleción Cromosómica , Síndrome de DiGeorge/genética , Haploinsuficiencia , Riñón/anomalías , Proteínas Nucleares/genética , Sistema Urinario/anomalías , Adolescente , Animales , Niño , Cromosomas Humanos Par 22 , Exoma , Femenino , Heterocigoto , Humanos , Lactante , Recién Nacido , Masculino , Ratones , Modelos Animales , Análisis de Secuencia de ADN , Adulto Joven , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA