Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
Cancer Res Commun ; 4(6): 1597-1608, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38836758

RESUMEN

In breast tumors, somatic mutation frequencies in TP53 and PIK3CA vary by tumor subtype and ancestry. Emerging data suggest tumor mutation status is associated with germline variants and genetic ancestry. We aimed to identify germline variants that are associated with somatic TP53 or PIK3CA mutation status in breast tumors. A genome-wide association study was conducted in 2,850 women of European ancestry with breast cancer using TP53 and PIK3CA mutation status (positive or negative) as well as specific functional categories [e.g., TP53 gain-of-function (GOF) and loss-of-function, PIK3CA activating] as phenotypes. Germline variants showing evidence of association were selected for validation analyses and tested in multiple independent datasets. Discovery association analyses found five variants associated with TP53 mutation status with P values <1 × 10-6 and 33 variants with P values <1 × 10-5. Forty-four variants were associated with PIK3CA mutation status with P values <1 × 10-5. In validation analyses, only variants at the ESR1 locus were associated with TP53 mutation status after multiple comparisons corrections. Combined analyses in European and Malaysian populations found ESR1 locus variants rs9383938 and rs9479090 associated with the presence of TP53 mutations overall (P values 2 × 10-11 and 4.6 × 10-10, respectively). rs9383938 also showed association with TP53 GOF mutations (P value 6.1 × 10-7). rs9479090 showed suggestive evidence (P value 0.02) for association with TP53 mutation status in African ancestry populations. No other variants were significantly associated with TP53 or PIK3CA mutation status. Larger studies are needed to confirm these findings and determine if additional variants contribute to ancestry-specific differences in mutation frequency. SIGNIFICANCE: Emerging data show ancestry-specific differences in TP53 and PIK3CA mutation frequency in breast tumors suggesting that germline variants may influence somatic mutational processes. This study identified variants near ESR1 associated with TP53 mutation status and identified additional loci with suggestive association which may provide biological insight into observed differences.


Asunto(s)
Neoplasias de la Mama , Fosfatidilinositol 3-Quinasa Clase I , Receptor alfa de Estrógeno , Estudio de Asociación del Genoma Completo , Mutación de Línea Germinal , Proteína p53 Supresora de Tumor , Humanos , Femenino , Neoplasias de la Mama/genética , Neoplasias de la Mama/etnología , Receptor alfa de Estrógeno/genética , Proteína p53 Supresora de Tumor/genética , Fosfatidilinositol 3-Quinasa Clase I/genética , Persona de Mediana Edad , Población Blanca/genética , Predisposición Genética a la Enfermedad/genética , Adulto , Polimorfismo de Nucleótido Simple
2.
Nat Genet ; 56(5): 752-757, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38684898

RESUMEN

Health equity is the state in which everyone has fair and just opportunities to attain their highest level of health. The field of human genomics has fallen short in increasing health equity, largely because the diversity of the human population has been inadequately reflected among participants of genomics research. This lack of diversity leads to disparities that can have scientific and clinical consequences. Achieving health equity related to genomics will require greater effort in addressing inequities within the field. As part of the commitment of the National Human Genome Research Institute (NHGRI) to advancing health equity, it convened experts in genomics and health equity research to make recommendations and performed a review of current literature to identify the landscape of gaps and opportunities at the interface between human genomics and health equity research. This Perspective describes these findings and examines health equity within the context of human genomics and genomic medicine.


Asunto(s)
Genómica , Equidad en Salud , Humanos , Genómica/métodos , Estados Unidos , Genoma Humano , National Human Genome Research Institute (U.S.)
3.
J Cancer Educ ; 39(4): 405-412, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38520478

RESUMEN

In our previous publication, we reported a framework to develop an undergraduate cancer research training program at Florida A&M University (FAMU) under the umbrella of the Florida-California Cancer Research, Education, and Engagement (CaRE2) Health Equity Center activity by harnessing the resources available at FAMU, the University of Florida (UF), and the University of Southern California (USC) Cancer Centers. The implementation of the CaRE2 face-to-face training platform was dramatically affected by the COVID-19 pandemic during the summer of 2020 and 2021 training periods. However, a concerted effort was made to restructure the face-to-face training model into virtual and hybrid training methods to maintain the continuity of the program during the pandemic. This article compared the three methods to identify the best platform for training URM students in cancer disparity research. The program's effectiveness was measured through motivation, experiences, and knowledge gained by trainees during and one year after the completion of the program. The results showed that the participants were highly positive in their feedback about the professional and academic values of the program. Although the virtual and hybrid methods experienced significant challenges during the pandemic, the hybrid training module offered an "above average" effectiveness in performance, like the face-to-face mentoring platform in mentoring URM students in cancer disparity research.


Asunto(s)
COVID-19 , Tutoría , Humanos , COVID-19/epidemiología , COVID-19/prevención & control , Tutoría/métodos , Florida , Neoplasias , Investigadores/educación , Femenino , SARS-CoV-2 , Investigación Biomédica/educación , California , Masculino , Grupos Minoritarios/educación , Universidades , Educación a Distancia/métodos
4.
Cell Death Differ ; 31(1): 1-8, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38001255

RESUMEN

Multiple Myeloma is a typical example of a neoplasm that shows significant differences in incidence, age of onset, type, and frequency of genetic alterations between patients of African and European ancestry. This perspective explores the hypothesis that both genetic polymorphisms and spontaneous somatic mutations in the TP53 tumor suppressor gene are determinants of these differences. In the US, the rates of occurrence of MM are at least twice as high in African Americans (AA) as in Caucasian Americans (CA). Strikingly, somatic TP53 mutations occur in large excess (at least 4-6-fold) in CA versus AA. On the other hand, TP53 contains polymorphisms specifying amino-acid differences that are under natural selection by the latitude of a population and have evolved during the migrations of humans over several hundred thousand years. The p53 protein plays important roles in DNA strand break repair and, therefore, in the surveillance of aberrant DNA recombination, leading to the B-cell translocations that are causal in the pathogenesis of MM. We posit that polymorphisms in one region of the TP53 gene (introns 2 and 3, and the proline-rich domain) specify a concentration of the p53 protein with a higher capacity to repress translocations in CA than AA patients. This, in turn, results in a higher risk of acquiring inactivating, somatic mutations in a different region of the TP53 gene (DNA binding domain) in CA than in AA patients. Such a mechanism, by which the polymorphic status of a gene influencing its own "spontaneous" mutation frequency, may provide a genetic basis to address ethnicity-related differences in the incidence and phenotypes of many different forms of cancer.


Asunto(s)
Mieloma Múltiple , Proteína p53 Supresora de Tumor , Humanos , Proteína p53 Supresora de Tumor/genética , Mieloma Múltiple/genética , Mutación , Genes p53 , Translocación Genética , ADN
5.
medRxiv ; 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38106140

RESUMEN

Background: In breast tumors, somatic mutation frequencies in TP53 and PIK3CA vary by tumor subtype and ancestry. HER2 positive and triple negative breast cancers (TNBC) have a higher frequency of TP53 somatic mutations than other subtypes. PIK3CA mutations are more frequently observed in hormone receptor positive tumors. Emerging data suggest tumor mutation status is associated with germline variants and genetic ancestry. We aimed to identify germline variants that are associated with somatic TP53 or PIK3CA mutation status in breast tumors. Methods: A genome-wide association study was conducted using breast cancer mutation status of TP53 and PIK3CA and functional mutation categories including TP53 gain of function (GOF) and loss of function mutations and PIK3CA activating/hotspot mutations. The discovery analysis consisted of 2850 European ancestry women from three datasets. Germline variants showing evidence of association with somatic mutations were selected for validation analyses based on predicted function, allele frequency, and proximity to known cancer genes or risk loci. Candidate variants were assessed for association with mutation status in a multi-ancestry validation study, a Malaysian study, and a study of African American/Black women with TNBC. Results: The discovery Germline x Mutation (GxM) association study found five variants associated with one or more TP53 phenotypes with P values <1×10-6, 33 variants associated with one or more TP53 phenotypes with P values <1×10-5, and 44 variants associated with one or more PIK3CA phenotypes with P values <1×10-5. In the multi-ancestry and Malaysian validation studies, germline ESR1 locus variant, rs9383938, was associated with the presence of TP53 mutations overall (P values 6.8×10-5 and 9.8×10-8, respectively) and TP53 GOF mutations (P value 8.4×10-6). Multiple variants showed suggestive evidence of association with PIK3CA mutation status in the validation studies, but none were significant after correction for multiple comparisons. Conclusions: We found evidence that germline variants were associated with TP53 and PIK3CA mutation status in breast cancers. Variants near the estrogen receptor alpha gene, ESR1, were significantly associated with overall TP53 mutations and GOF mutations. Larger multi-ancestry studies are needed to confirm these findings and determine if these variants contribute to ancestry-specific differences in mutation frequency.

6.
Cancer Control ; 30: 10732748231197878, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37703814

RESUMEN

INTRODUCTION: The Florida-California Cancer Research, Education, and Engagement (CaRE2) Health Equity Center is a triad partnership committed to increasing institutional capacity for cancer disparity research, the diversity of the cancer workforce, and community empowerment. This article provides an overview of the structure, process innovations, and initial outcomes from the first 4 years of the CaRE2 triad partnership. METHODS: CaRE2 serves diverse populations in Florida and California using a "molecule to the community and back" model. We prioritize research on the complex intersection of biological, environmental, and social determinants health, working together with scientific and health disparities communities, sharing expertise across institutions, bidirectional training, and community outreach. Partnership progress and outcomes were assessed using mixed methods and four Program Steering Committee meetings. RESULTS: Research capacity was increased through development of a Living Repository of 81 cancer model systems from minority patients for novel cancer drug development. CaRE2 funded 15 scientific projects resulting in 38 publications. Workforce diversity entailed supporting 94 cancer trainees (92 URM) and 34 ESIs (32 URM) who coauthored 313 CaRE2-related publications and received 48 grants. Community empowerment was promoted via outreaching to more than 3000 individuals, training 145 community cancer advocates (including 28 Community Scientist Advocates), and publishing 10 community reports. CaRE2 members and trainees together have published 639 articles, received 61 grants, and 57 awards. CONCLUSION: The CaRE2 partnership has achieved its initial aims. Infrastructure for translational cancer research was expanded at one partner institution, and cancer disparities research was expanded at the two cancer centers.


Asunto(s)
Equidad en Salud , Neoplasias , Humanos , California , Florida , Grupos Minoritarios , Neoplasias/terapia
7.
PLoS One ; 18(4): e0284949, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37104368

RESUMEN

INTRODUCTION: Many patients with growth hormone-secreting pituitary adenoma (GHPA) fail to achieve biochemical remission, warranting investigation into epigenetic and molecular signatures associated with tumorigenesis and hormonal secretion. Prior work exploring the DNA methylome showed Myc-Associated Protein X (MAX), a transcription factor involved in cell cycle regulation, was differentially methylated between GHPA and nonfunctional pituitary adenoma (NFPA). We aimed to validate the differential DNA methylation and related MAX protein expression profiles between NFPA and GHPA. METHODS: DNA methylation levels were measured in 52 surgically resected tumors (37 NFPA, 15 GHPA) at ~100,000 known MAX binding sites derived using ChIP-seq analysis from ENCODE. Findings were correlated with MAX protein expression using a constructed tissue microarray (TMA). Gene ontology analysis was performed to explore downstream genetic and signaling pathways regulated by MAX. RESULTS: GHPA had more hypomethylation events across all known MAX binding sites. Of binding sites defined using ChIP-seq analysis, 1,551 sites had significantly different methylation patterns between the two cohorts; 432 occurred near promoter regions potentially regulated by MAX, including promoters of TNF and MMP9. Gene ontology analysis suggested enrichment in genes involved in oxygen response, immune system regulation, and cell proliferation. Thirteen MAX binding sites were within coding regions of genes. GHPA demonstrated significantly increased expression of MAX protein compared to NFPA. CONCLUSION: GHPA have significantly different DNA methylation and downstream protein expression levels of MAX compared to NFPA. These differences may influence mechanisms involved with cellular proliferation, tumor invasion and hormonal secretion.


Asunto(s)
Adenoma , Adenoma Hipofisario Secretor de Hormona del Crecimiento , Hormona de Crecimiento Humana , Neoplasias Hipofisarias , Humanos , Adenoma/patología , Hormona del Crecimiento , Adenoma Hipofisario Secretor de Hormona del Crecimiento/genética , Adenoma Hipofisario Secretor de Hormona del Crecimiento/complicaciones , Neoplasias Hipofisarias/patología
8.
Cancer Epidemiol Biomarkers Prev ; 32(4): 487-495, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36791345

RESUMEN

BACKGROUND: Engaging diverse populations in cancer genomics research is of critical importance and is a fundamental goal of the NCI Participant Engagement and Cancer Genome Sequencing (PE-CGS) Network. Established as part of the Cancer Moonshot, PE-CGS is a consortium of stakeholders including clinicians, scientists, genetic counselors, and representatives of potential study participants and their communities. Participant engagement is an ongoing, bidirectional, and mutually beneficial interaction between study participants and researchers. PE-CGS sought to set priorities in participant engagement for conducting the network's research. METHODS: PE-CGS deliberatively engaged its stakeholders in the following four-phase process to set the network's research priorities in participant engagement: (i) a brainstorming exercise to elicit potential priorities; (ii) a 2-day virtual meeting to discuss priorities; (iii) recommendations from the PE-CGS External Advisory Panel to refine priorities; and (iv) a virtual meeting to set priorities. RESULTS: Nearly 150 PE-CGS stakeholders engaged in the process. Five priorities were set: (i) tailor education and communication materials for participants throughout the research process; (ii) identify measures of participant engagement; (iii) identify optimal participant engagement strategies; (iv) understand cancer disparities in the context of cancer genomics research; and (v) personalize the return of genomics findings to participants. CONCLUSIONS: PE-CGS is pursuing these priorities to meaningfully engage diverse and underrepresented patients with cancer and posttreatment cancer survivors as participants in cancer genomics research and, subsequently, generate new discoveries. IMPACT: Data from PE-CGS will be shared with the broader scientific community in a manner consistent with participant informed consent and community agreement.


Asunto(s)
Consentimiento Informado , Neoplasias , Humanos , Neoplasias/genética , Motivación , Genómica , Escolaridad
9.
Cancer Res ; 83(1): 34-48, 2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36283023

RESUMEN

Triple-negative breast cancer (TNBC) is an aggressive disease that disproportionately affects African American (AA) women. Limited targeted therapeutic options exist for patients with TNBC. Here, we employ spatial transcriptomics to interrogate tissue from a racially diverse TNBC cohort to comprehensively annotate the transcriptional states of spatially resolved cellular populations. A total of 38,706 spatial features from a cohort of 28 sections from 14 patients were analyzed. Intratumoral analysis of spatial features from individual sections revealed heterogeneous transcriptional substructures. However, integrated analysis of all samples resulted in nine transcriptionally distinct clusters that mapped across all individual sections. Furthermore, novel use of join count analysis demonstrated nonrandom directional spatial dependencies of the transcriptionally defined shared clusters, supporting a conserved spatio-transcriptional architecture in TNBC. These findings were substantiated in an independent validation cohort comprising 17,861 spatial features representing 15 samples from 8 patients. Stratification of samples by race revealed race-associated differences in hypoxic tumor content and regions of immune-rich infiltrate. Overall, this study combined spatial and functional molecular analyses to define the tumor architecture of TNBC, with potential implications in understanding TNBC disparities. SIGNIFICANCE: Spatial transcriptomics profiling of a diverse cohort of triple-negative breast cancers and innovative informatics approaches reveal a conserved cellular architecture across cancers and identify proportional differences in tumor cell composition by race.


Asunto(s)
Transcriptoma , Neoplasias de la Mama Triple Negativas , Humanos , Femenino , Neoplasias de la Mama Triple Negativas/patología , Perfilación de la Expresión Génica , Negro o Afroamericano , Regulación Neoplásica de la Expresión Génica
10.
Cancer Discov ; 12(11): 2530-2551, 2022 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-36121736

RESUMEN

Women of sub-Saharan African descent have disproportionately higher incidence of triple-negative breast cancer (TNBC) and TNBC-specific mortality across all populations. Population studies show racial differences in TNBC biology, including higher prevalence of basal-like and quadruple-negative subtypes in African Americans (AA). However, previous investigations relied on self-reported race (SRR) of primarily U.S. populations. Due to heterogeneous genetic admixture and biological consequences of social determinants, the true association of African ancestry with TNBC biology is unclear. To address this, we conducted RNA sequencing on an international cohort of AAs, as well as West and East Africans with TNBC. Using comprehensive genetic ancestry estimation in this African-enriched cohort, we found expression of 613 genes associated with African ancestry and 2,000+ associated with regional African ancestry. A subset of African-associated genes also showed differences in normal breast tissue. Pathway enrichment and deconvolution of tumor cellular composition revealed that tumor-associated immunologic profiles are distinct in patients of African descent. SIGNIFICANCE: Our comprehensive ancestry quantification process revealed that ancestry-associated gene expression profiles in TNBC include population-level distinctions in immunologic landscapes. These differences may explain some differences in race-group clinical outcomes. This study shows the first definitive link between African ancestry and the TNBC immunologic landscape, from an African-enriched international multiethnic cohort. See related commentary by Hamilton et al., p. 2496. This article is highlighted in the In This Issue feature, p. 2483.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Femenino , Neoplasias de la Mama Triple Negativas/genética , Transcriptoma , Negro o Afroamericano/genética , Biología
11.
Cancer Causes Control ; 33(6): 831-841, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35384527

RESUMEN

PURPOSE: Triple negative breast cancer (TNBC) is an aggressive breast cancer subtype that disproportionately affects women of African ancestry (WAA) and is often associated with poor survival. Although there is a high prevalence of TNBC across West Africa and in women of the African diaspora, there has been no comprehensive genomics study to investigate the mutational profile of ancestrally related women across the Caribbean and West Africa. METHODS: This multisite cross-sectional study used 31 formalin-fixed paraffin-embedded (FFPE) samples from Barbadian and Nigerian TNBC participants. High-resolution whole exome sequencing (WES) was performed on the Barbadian and Nigerian TNBC samples to identify their mutational profiles and comparisons were made to African American, European American and Asian American sequencing data obtained from The Cancer Genome Atlas (TCGA). Whole exome sequencing was conducted on tumors with an average of 382 × coverage and 4335 × coverage for pooled germline non-tumor samples. RESULTS: Variants detected at high frequency in our WAA cohorts were found in the following genes NBPF12, PLIN4, TP53 and BRCA1. In the TCGA TNBC cases, these genes had a lower mutation rate, except for TP53 (32% in our cohort; 63% in TCGA-African American; 67% in TCGA-European American; 63% in TCGA-Asian). For all altered genes, there were no differences in frequency of mutations between WAA TNBC groups including the TCGA-African American cohort. For copy number variants, high frequency alterations were observed in PIK3CA, TP53, FGFR2 and HIF1AN genes. CONCLUSION: This study provides novel insights into the underlying genomic alterations in WAA TNBC samples and shines light on the importance of inclusion of under-represented populations in cancer genomics and biomarker studies.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Barbados , Estudios Transversales , Femenino , Genómica , Humanos , Mutación , Nigeria/epidemiología , Neoplasias de la Mama Triple Negativas/epidemiología , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología
12.
Mol Oncol ; 16(1): 104-115, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34437759

RESUMEN

This prospective phase II clinical trial (Side Out 2) explored the clinical benefits of treatment selection informed by multi-omic molecular profiling (MoMP) in refractory metastatic breast cancers (MBCs). Core needle biopsies were collected from 32 patients with MBC at trial enrollment. Patients had received an average of 3.94 previous lines of treatment in the metastatic setting before enrollment in this study. Samples underwent MoMP, including exome sequencing, RNA sequencing (RNA-Seq), immunohistochemistry, and quantitative protein pathway activation mapping by Reverse Phase Protein Microarray (RPPA). Clinical benefit was assessed using the previously published growth modulation index (GMI) under the hypothesis that MoMP-selected therapy would warrant further investigation for GMI ≥ 1.3 in ≥ 35% of the patients. Of the 32 patients enrolled, 29 received treatment based on their MoMP and 25 met the follow-up criteria established by the trial protocol. Molecular information was delivered to the tumor board in a median time frame of 14 days (11-22 days), and targetable alterations for commercially available agents were found in 23/25 patients (92%). Of the 25 patients, 14 (56%) reached GMI ≥ 1.3. A high level of DNA topoisomerase I (TOPO1) led to the selection of irinotecan-based treatments in 48% (12/25) of the patients. A pooled analysis suggested clinical benefit in patients with high TOPO1 expression receiving irinotecan-based regimens (GMI ≥ 1.3 in 66.7% of cases). These results confirmed previous observations that MoMP increases the frequency of identifiable actionable alterations (92% of patients). The MoMP proposed allows the identification of biomarkers that are frequently expressed in MBCs and the evaluation of their role as predictors of response to commercially available agents. Lastly, this study confirmed the role of MoMP for informing treatment selection in refractory MBC patients: more than half of the enrolled patients reached a GMI ≥ 1.3 even after multiple lines of previous therapies for metastatic disease.


Asunto(s)
Neoplasias de la Mama , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Femenino , Humanos , Inmunohistoquímica , Irinotecán , Estudios Prospectivos , Resultado del Tratamiento
14.
Genes (Basel) ; 12(9)2021 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-34573384

RESUMEN

KRAS mutations are one of the most common oncogenic drivers in non-small cell lung cancer (NSCLC) and in lung adenocarcinomas in particular. Development of therapeutics targeting KRAS has been incredibly challenging, prompting indirect inhibition of downstream targets such as MEK and ERK. Such inhibitors, unfortunately, come with limited clinical efficacy, and therefore the demand for developing novel therapeutic strategies remains an urgent need for these patients. Exploring the influence of wild-type (WT) KRAS on druggable targets can uncover new vulnerabilities for the treatment of KRAS mutant lung adenocarcinomas. Using commercially available KRAS mutant lung adenocarcinoma cell lines, we explored the influence of WT KRAS on signaling networks and druggable targets. Expression and/or activation of 183 signaling proteins, most of which are targets of FDA-approved drugs, were captured by reverse-phase protein microarray (RPPA). Selected findings were validated on a cohort of 23 surgical biospecimens using the RPPA. Kinase-driven signatures associated with the presence of the KRAS WT allele were detected along the MAPK and AKT/mTOR signaling pathway and alterations of cell cycle regulators. FoxM1 emerged as a potential vulnerability of tumors retaining the KRAS WT allele both in cell lines and in the clinical samples. Our findings suggest that loss of WT KRAS impacts on signaling events and druggable targets in KRAS mutant lung adenocarcinomas.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Resistencia a Antineoplásicos/genética , Neoplasias Pulmonares , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas p21(ras)/genética , Células A549 , Alelos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Biomarcadores Farmacológicos/análisis , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Línea Celular Tumoral , Quinasas MAP Reguladas por Señal Extracelular/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Redes Reguladoras de Genes/efectos de los fármacos , Redes Reguladoras de Genes/genética , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Inhibidores mTOR/farmacología , Inhibidores mTOR/uso terapéutico , Mutación , Proteína Oncogénica v-akt/efectos de los fármacos , Proteína Oncogénica v-akt/metabolismo , Pruebas de Farmacogenómica , Inhibidores de Proteínas Quinasas/farmacología , Estudios Retrospectivos , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
15.
JMIR Cancer ; 7(3): e25621, 2021 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-34554099

RESUMEN

BACKGROUND: Racial and ethnic diversity in clinical trials for cancer treatment is essential for the development of treatments that are effective for all patients and for identifying potential differences in toxicity between different demographics. Mining of social media discussions about clinical trials has been used previously to identify patient barriers to enrollment in clinical trials; however, a comprehensive breakdown of sentiments and barriers by various racial and ethnic groups is lacking. OBJECTIVE: The aim of this study is to use an innovative methodology to analyze web-based conversations about cancer clinical trials and to identify and compare conversation topics, barriers, and sentiments between different racial and ethnic populations. METHODS: We analyzed 372,283 web-based conversations about cancer clinical trials, of which 179,339 (48.17%) of the discussions had identifiable race information about the individual posting the conversations. Using sophisticated machine learning software and analyses, we were able to identify key sentiments and feelings, topics of interest, and barriers to clinical trials across racial groups. The stage of treatment could also be identified in many of the discussions, allowing for a unique insight into how the sentiments and challenges of patients change throughout the treatment process for each racial group. RESULTS: We observed that only 4.01% (372,283/9,284,284) of cancer-related discussions referenced clinical trials. Within these discussions, topics of interest and identified clinical trial barriers discussed by all racial and ethnic groups throughout the treatment process included health care professional interactions, cost of care, fear, anxiety and lack of awareness, risks, treatment experiences, and the clinical trial enrollment process. Health care professional interactions, cost of care, and enrollment processes were notably discussed more frequently in minority populations. Other minor variations in the frequency of discussion topics between ethnic and racial groups throughout the treatment process were identified. CONCLUSIONS: This study demonstrates the power of digital search technology in health care research. The results are also valuable for identifying the ideal content and timing for the delivery of clinical trial information and resources for different racial and ethnic groups.

16.
Oncogene ; 40(45): 6329-6342, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34433909

RESUMEN

Hepatocyte growth factor-overexpressing mice that harbor a deletion of the Ink4a/p16 locus (HP mice) form melanomas with low metastatic potential in response to UV irradiation. Here we report that these tumors become highly metastatic following hemizygous deletion of the Nme1 and Nme2 metastasis suppressor genes (HPN mice). Whole-genome sequencing of melanomas from HPN mice revealed a striking increase in lung metastatic activity that is associated with missense mutations in eight signature genes (Arhgap35, Atp8b4, Brca1, Ift172, Kif21b, Nckap5, Pcdha2, and Zfp869). RNA-seq analysis of transcriptomes from HP and HPN primary melanomas identified a 32-gene signature (HPN lung metastasis signature) for which decreased expression is strongly associated with lung metastatic potential. Analysis of transcriptome data from The Cancer Genome Atlas revealed expression profiles of these genes that predict improved survival of patients with cutaneous or uveal melanoma. Silencing of three representative HPN lung metastasis signature genes (ARRDC3, NYNRIN, RND3) in human melanoma cells resulted in increased invasive activity, consistent with roles for these genes as mediators of the metastasis suppressor function of NME1 and NME2. In conclusion, our studies have identified a family of genes that mediate suppression of melanoma lung metastasis, and which may serve as prognostic markers and/or therapeutic targets for clinical management of metastatic melanoma.


Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/secundario , Melanoma/genética , Nucleósido Difosfato Quinasas NM23/genética , Rayos Ultravioleta/efectos adversos , Animales , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Factor de Crecimiento de Hepatocito/genética , Humanos , Melanoma/etiología , Ratones , Mutación Missense , Análisis de Secuencia de ARN , Análisis de Supervivencia , Secuenciación Completa del Genoma
18.
Mol Cell ; 81(8): 1631-1639, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33826920

RESUMEN

Spatial transcriptional profiling provides gene expression information within the important anatomical context of tissue architecture. This approach is well suited to characterizing solid tumors, which develop within a complex landscape of malignant cells, immune cells, and stroma. In a single assay, spatial transcriptional profiling can interrogate the role of spatial relationships among these cell populations as well as reveal spatial patterns of relevant oncogenic genetic events. The broad utility of this approach is reflected in the array of strategies that have been developed for its implementation as well as in the recent commercial development of several profiling platforms. The flexibility to apply these technologies to both hypothesis-driven and discovery-driven studies allows widespread applicability in research settings. This review discusses available technologies for spatial transcriptional profiling and several applications for their use in cancer research.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Neoplasias/genética , Transcripción Genética/genética , Animales , Expresión Génica/genética , Humanos
19.
Breast Cancer Res Treat ; 186(2): 391-401, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33576900

RESUMEN

PURPOSE: Triple-negative breast cancer (TNBC) is an aggressive subtype most prevalent among women of Western Sub-Saharan African ancestry. It accounts for 15-25% of African American (AA) breast cancers (BC) and up to 80% of Ghanaian breast cancers, thus contributing to outcome disparities in BC for black women. The aggressive biology of TNBC has been shown to be regulated partially by breast cancer stem cells (BCSC) which mediate tumor recurrence and metastasis and are more abundant in African breast tumors. METHODS: We studied the biological differences between TNBC in women with African ancestry and those of Caucasian women by comparing the gene expression of the BCSC. From low-passage patient derived xenografts (PDX) from Ghanaian (GH), AA, and Caucasian American (CA) TNBCs, we sorted for and sequenced the stem cell populations and analyzed for differential gene enrichment. RESULTS: In our cohort of TNBC tumors, we observed that the ALDH expressing stem cells display distinct ethnic specific gene expression patterns, with the largest difference existing between the GH and AA ALDH+ cells. Furthermore, the tumors from the women of African ancestry [GH/AA] had ALDH stem cell (SC) enrichment for expression of immune related genes and processes. Among the significantly upregulated genes were CD274 (PD-L1), CXCR9, CXCR10 and IFI27, which could serve as potential drug targets. CONCLUSIONS: Further exploration of the role of immune regulated genes and biological processes in BCSC may offer insight into developing novel approaches to treating TNBC to help ameliorate survival disparities in women with African ancestry.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Negro o Afroamericano/genética , Femenino , Ghana/epidemiología , Humanos , Recurrencia Local de Neoplasia , Neoplasias de la Mama Triple Negativas/genética , Población Blanca
20.
J Cancer Educ ; 36(5): 914-919, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-32430639

RESUMEN

Lack of substantive research experiences and technical skills mentoring during undergraduate studies leaves many underrepresented minority (URM) students unprepared to apply to competitive graduate programs. As a part of our ongoing effort to increase the pipeline for the development and training of successful URM scientists in biomedical sciences with focus on reducing cancer health disparities, the Florida-California Cancer Research Education and Engagement (CaRE2) Health Equity Center was launched in 2018. Funded through an NIH/NCI U54 grant mechanism, the CaRE2 Center is a triad partnership among Florida Agricultural and Mechanical University (FAMU), a minority-serving institution, University of Florida (UF), and University of Southern California (USC) Cancer Center. One of the objectives of the triad partnership is to promote the coordination and implementation of the training of the next generation of Black and Latinx biomedical scientists in Florida and California. An important component of the CaRE2 program is the Research and Education Core (REC) designed to coordinate the training of URM students and researchers at different levels in their academic and professional developments. The undergraduate cancer research training program under FAMU-CaRE2 Center is a 3-year (2018-2021) project to identify, train, mentor, and provide the URM undergraduate students with the support network they need to flourish in the program and beyond. In its year-1 funding cycle, the program has made significant progress in developing a novel framework for an undergraduate cancer research education and engagement program at FAMU, one of the forefront minority institutions in the nation. The mentored research program is complemented with professional development and engagement activities, including cancer research seminars, workshops, and community outreach activities. The purpose of this paper is to discuss the strategies implemented for an effective partnership, the leadership and mentoring skills, and outcomes from the year-1 experiences. In addition, we present the progress made in advancing the pool of underrepresented minority students with scientific and academic career progression paths focused on cancer health disparities.


Asunto(s)
Investigación Biomédica , Tutoría , Neoplasias , Florida , Humanos , Grupos Minoritarios , Estudiantes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA