Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Photochem Photobiol Sci ; 18(2): 546-554, 2019 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-30681107

RESUMEN

Photodynamic therapy (PDT) is a clinically approved treatment that exerts a selective cytotoxic activity toward cancer cells. The procedure involves the administration of a photosensitizer drug followed by its activation by visible light. In the presence of oxygen, a series of events lead to tumor cell death. PDT releases different cell signals, some of these lead to death while others can lead to survival. The surviving or resistant cells contribute to the recurrence of tumors after treatment, from which the necessity to understand this molecular response induced by PDT arises. It has been shown that both Heat Shock Proteins (HSPs) and autophagy promote PDT resistance. Moreover, both of them can be stimulated by PDT treatment. However, the molecular interplay between HSPs and autophagy in the photodynamic therapy context is poorly understood. We studied whether PDT induces autophagic activity through HSPs. We demonstrated that PDT promoted HSP27 expression, which in turn triggered autophagic cell survival as well as inhibited apoptosis in colon cancer cells. In addition, an overexpression of the HSP27/autophagy axis was observed in skin carcinoma cells resistant to PDT.


Asunto(s)
Autofagia/efectos de los fármacos , Autofagia/efectos de la radiación , Proteínas de Choque Térmico HSP27/metabolismo , Fotoquimioterapia , Células CACO-2 , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Técnicas de Silenciamiento del Gen , Proteínas de Choque Térmico HSP27/deficiencia , Proteínas de Choque Térmico HSP27/genética , Humanos , Fármacos Fotosensibilizantes/farmacología , Protoporfirinas/farmacología
2.
J Cardiovasc Pharmacol Ther ; 20(2): 211-20, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24924917

RESUMEN

Cardiovascular disease is often associated with chronic kidney disease and vice versa; myocardial vitamin D receptors (VDRs) are among the probable links between the 2 disorders. The vitamin D receptor activator paricalcitol protects against some renal and cardiovascular complications. However, the structural and electrophysiological effects of myocardial vitamin D receptor modification and its impact on the response to ischemia-reperfusion are currently unknown. This work attempted to determine whether obstructive nephropathy induced myocardial changes (in rats) linked to vitamin D receptor deficiency and to ventricular arrhythmias in Langendorff-perfused hearts. Unilateral ureteral-obstructed and Sham-operated rats were treated with either paricalcitol (30 ng/kg/d intraperitoneal) or vehicle for 15 days. In 5 hearts from each group, we found that obstructed rats showed a reduction in VDRs and an increase in angiotensin II type 1 receptor expression (messenger RNA and protein), suffered fibrosis (determined by Masson trichrome stain) and myofibril reduction with an increase in mitochondrial size, and had dilated crests (determined by electron microscopy). These changes were reversed by paricalcitol. In 8 additional hearts per group, we found that obstructed rats showed a higher incidence of ventricular fibrillation during reperfusion (after 10 minutes of regional ischemia) than did those treated with paricalcitol. The action potential duration was prolonged throughout the experiment in paricalcitol-treated rats. We conclude that the reduction in myocardial vitamin D receptor expression in obstructed rats might be related to myocardial remodeling associated with an increase in arrhythmogenesis and that paricalcitol protects against these changes by restoring myocardial vitamin D receptor levels and prolonging action potentials.


Asunto(s)
Arritmias Cardíacas/tratamiento farmacológico , Ergocalciferoles/uso terapéutico , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Miocardio/patología , Receptores de Calcitriol/deficiencia , Obstrucción Ureteral/complicaciones , Potenciales de Acción , Animales , Circulación Coronaria , Femenino , Miocardio/metabolismo , Ratas , Ratas Endogámicas WKY , Receptor de Angiotensina Tipo 1/análisis , Receptores de Calcitriol/análisis , Obstrucción Ureteral/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA