Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Acad Med ; 94(4): 528-534, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30520807

RESUMEN

The process of translating academic biomedical advances into clinical care improvements is difficult, risky, expensive, and poorly understood. Notably, many clinicians who identify health care problems do not have the time or expertise to solve the problems, and many academic researchers are unaware of important gaps in clinical care to which their expertise may apply.Recognizing an opportunity to connect people who can identify health care problems with those who can solve them, the Yale Center for Biomedical Innovation and Technology (CBIT) was established in 2014 to educate and enhance the impact of health care innovators. The authors review other health care innovation centers and describe best practices borrowed by Yale CBIT, which tailored its activities and approach to its unique ecosystem.In four years, Yale CBIT has affected over 3,000 people and established a health care innovation cycle as an efficient strategy to guide translational research. Yale CBIT has created or supported graduate and undergraduate courses, clinical immersion programs for industry partners, and large health care hackathon events. Over 200 projects have been submitted to CBIT for mentorship, and some of those projects have been commercialized and raised millions of dollars of follow-on funding.The authors present Yale CBIT as one model of accelerating the impact of academic medicine on clinical practice and outcomes. The project advising strategy is intended to be a template to maximize the efficiency of biomedical innovation and ultimately improve the outcomes and experiences of future patients.


Asunto(s)
Éxito Académico , Tecnología Biomédica/organización & administración , Invenciones/tendencias , Tecnología Biomédica/tendencias , Humanos
2.
Mol Pharm ; 7(1): 86-93, 2010 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-19886674

RESUMEN

Cystic fibrosis (CF) is a common life threatening genetic disease (incidence: approximately 1 in 2500 live births). CF is caused by mutations in CFTR, a chloride channel involved in epithelial secretion of fluid and electrolytes. The most common mutation entails the deletion of a phenylalanine in position 508 that causes protein misfolding and abnormal CFTR processing. The DeltaF508 mutation accounts for approximately 70% of all CF alleles, and about 90% of CF patients carry at least one copy of DeltaF508 CFTR. Curcumin, a natural constituent of Curcuma longa (turmeric spice), is a nontoxic low-affinity SERCA (sarco (endo)plasmic reticulum calcium ATPase) pump inhibitor thought to permit DeltaF508 CFTR escape from the ER. The compound has been shown to be capable of correcting the defect in cell lines and mice expressing DeltaF508 CFTR. In this work, poly lactic-co-glycolic acid (PLGA) nanoparticles encapsulating curcumin were synthesized and used to treat two different CF mouse strains in an effort to correct the defects associated with CF by improving bioavailability of the compound, which has previously been a challenge in treatment with curcumin. Our results suggest that oral administration of PLGA nanoparticles encapsulating curcumin enhances the effects of curcumin therapy in CF mice, as compared to delivery of nonencapsulated curcumin.


Asunto(s)
Curcumina/administración & dosificación , Fibrosis Quística/tratamiento farmacológico , Administración Oral , Animales , Disponibilidad Biológica , Transporte Biológico Activo/efectos de los fármacos , Curcumina/farmacocinética , Fibrosis Quística/genética , Fibrosis Quística/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Inhibidores Enzimáticos/administración & dosificación , Inhibidores Enzimáticos/farmacocinética , Humanos , Ácido Láctico , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CFTR , Microscopía Electrónica de Rastreo , Mutación , Nanopartículas/administración & dosificación , Nanopartículas/química , Nanopartículas/ultraestructura , Ácido Poliglicólico , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/antagonistas & inhibidores
3.
Biomaterials ; 30(14): 2790-8, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19232712

RESUMEN

Biodegradable polymer nanoparticles (NPs) are a promising approach for intracellular delivery of drugs, proteins, and nucleic acids, but little is known about their intracellular fate, particularly in epithelial cells, which represent a major target. Rhodamine-loaded PLGA (polylactic-co-glycolic acid) NPs were used to explore particle uptake and intracellular fate in three different epithelial cell lines modeling the respiratory airway (HBE), gut (Caco-2), and renal proximal tubule (OK). To track intracellular fate, immunofluorescence techniques and confocal microscopy were used to demonstrate colocalization of NPs with specific organelles: early endosomes, late endosomes, lysosomes, endoplasmic reticulum (ER), and Golgi apparatus. Confocal analysis demonstrated that NPs are capable of entering cells of all three types of epithelium. NPs appear to colocalize with the early endosomes at short times after exposure (approximately 2 h), but are also found in other compartments within the cytoplasm, notably Golgi and, possibly, ER, as time progressed over the period of 4-24 h. The rate and extent of uptake differed among these cell lines: at a fixed particle/cell ratio, cellular uptake was most abundant in OK cells and least abundant in Caco-2 cells. We present a model for the intracellular fate of particles that is consistent with our experimental data.


Asunto(s)
Células Epiteliales/metabolismo , Espacio Intracelular/metabolismo , Ácido Láctico/química , Ácido Láctico/metabolismo , Nanopartículas/química , Ácido Poliglicólico/química , Ácido Poliglicólico/metabolismo , Línea Celular , Humanos , Microscopía Electrónica de Rastreo , Nanopartículas/ultraestructura , Copolímero de Ácido Poliláctico-Ácido Poliglicólico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA