Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Viruses ; 13(6)2021 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-34071557

RESUMEN

Patients with underlying cardiovascular conditions are particularly vulnerable to severe COVID-19. In this project, we aimed to characterize similarities in dysregulated immune pathways between COVID-19 patients and patients with cardiomyopathy, venous thromboembolism (VTE), or coronary artery disease (CAD). We hypothesized that these similarly dysregulated pathways may be critical to how cardiovascular diseases (CVDs) exacerbate COVID-19. To evaluate immune dysregulation in different diseases, we used four separate datasets, including RNA-sequencing data from human left ventricular cardiac muscle samples of patients with dilated or ischemic cardiomyopathy and healthy controls; RNA-sequencing data of whole blood samples from patients with single or recurrent event VTE and healthy controls; RNA-sequencing data of human peripheral blood mononuclear cells (PBMCs) from patients with and without obstructive CAD; and RNA-sequencing data of platelets from COVID-19 subjects and healthy controls. We found similar immune dysregulation profiles between patients with CVDs and COVID-19 patients. Interestingly, cardiomyopathy patients display the most similar immune landscape to COVID-19 patients. Additionally, COVID-19 patients experience greater upregulation of cytokine- and inflammasome-related genes than patients with CVDs. In all, patients with CVDs have a significant overlap of cytokine- and inflammasome-related gene expression profiles with that of COVID-19 patients, possibly explaining their greater vulnerability to severe COVID-19.


Asunto(s)
COVID-19/inmunología , COVID-19/fisiopatología , Cardiomiopatías/inmunología , Enfermedad de la Arteria Coronaria/inmunología , Tromboembolia Venosa/inmunología , COVID-19/complicaciones , COVID-19/genética , Cardiomiopatías/complicaciones , Cardiomiopatías/genética , Enfermedad de la Arteria Coronaria/complicaciones , Enfermedad de la Arteria Coronaria/genética , Citocinas/genética , Conjuntos de Datos como Asunto , Humanos , Huésped Inmunocomprometido/genética , Inflamasomas/genética , Recuento de Linfocitos , Gravedad del Paciente , RNA-Seq , Tromboembolia Venosa/complicaciones
2.
Comput Struct Biotechnol J ; 19: 1986-1997, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33995898

RESUMEN

While the intratumor microbiome has become increasingly implicated in cancer development, the microbial landscape of papillary thyroid carcinoma (PTC) is essentially uninvestigated. PTC is characterized by varied prognosis between gender and cancer subtype, but the cause for gender and subtype-based dissimilarities is unclear. Women are more frequently diagnosed with PTC, while men suffer more advanced-staged PTC. In addition, tall cell variants are more aggressive than classical and follicular variants of PTC. We hypothesized that intratumor microbiome composition distinctly alters the immune landscape and predicts clinical outcome between PTC subtypes and between patient genders. Raw whole-transcriptome RNA-sequencing, Level 3 normalized mRNA expression read counts, and DNA methylation 450 k sequencing data for untreated, nonirradiated tumor, and adjacent normal tissue were downloaded from the Genomic Data Commons (GDC) legacy archive for 563 thyroid carcinoma patients. Microbe counts were extracted using Pathoscope 2.0 software. We correlated microbe abundance to clinical variables and immune-associated gene expression. Gene-set enrichment, mutation, and methylation analyses were conducted to correlate microbe abundance to characterize microbes' roles. Overall, PTC tumor tissue significantly lacked microbes that are populated in adjacent normal tissue, which suggests presence of microbes may be critical in controlling immune cell expression and regulating immune and cancer pathways to mitigate cancer growth. In contrast, we also found that microbes distinctly abundant in tall cell and male patient cohorts were also correlated with higher mutation expression and methylation of tumor suppressors. Microbe dysbiosis in specific PTC types may explain observable differences in PTC progression and pathogenesis. These microbes provide a basis for developing specialized prebiotic and probiotic treatments for varied PTC tumors.

3.
BMC Med Inform Decis Mak ; 20(1): 247, 2020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-32993652

RESUMEN

BACKGROUND: The recent Coronavirus Disease 2019 (COVID-19) pandemic has placed severe stress on healthcare systems worldwide, which is amplified by the critical shortage of COVID-19 tests. METHODS: In this study, we propose to generate a more accurate diagnosis model of COVID-19 based on patient symptoms and routine test results by applying machine learning to reanalyzing COVID-19 data from 151 published studies. We aim to investigate correlations between clinical variables, cluster COVID-19 patients into subtypes, and generate a computational classification model for discriminating between COVID-19 patients and influenza patients based on clinical variables alone. RESULTS: We discovered several novel associations between clinical variables, including correlations between being male and having higher levels of serum lymphocytes and neutrophils. We found that COVID-19 patients could be clustered into subtypes based on serum levels of immune cells, gender, and reported symptoms. Finally, we trained an XGBoost model to achieve a sensitivity of 92.5% and a specificity of 97.9% in discriminating COVID-19 patients from influenza patients. CONCLUSIONS: We demonstrated that computational methods trained on large clinical datasets could yield ever more accurate COVID-19 diagnostic models to mitigate the impact of lack of testing. We also presented previously unknown COVID-19 clinical variable correlations and clinical subgroups.


Asunto(s)
Técnicas de Laboratorio Clínico/métodos , Infecciones por Coronavirus/diagnóstico , Gripe Humana/diagnóstico , Aprendizaje Automático , Neumonía Viral/diagnóstico , Betacoronavirus , COVID-19 , Prueba de COVID-19 , Simulación por Computador , Infecciones por Coronavirus/clasificación , Conjuntos de Datos como Asunto , Diagnóstico Diferencial , Femenino , Humanos , Virus de la Influenza A , Masculino , Pandemias/clasificación , Neumonía Viral/clasificación , SARS-CoV-2 , Sensibilidad y Especificidad
4.
Cancers (Basel) ; 12(9)2020 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-32962112

RESUMEN

An intra-pancreatic microbiota was recently discovered in several prominent studies. Since pancreatic adenocarcinoma (PAAD) is one of the most lethal cancers worldwide, and the intratumor microbiome was found to be a significant contributor to carcinogenesis in other cancers, this study aims to characterize the PAAD microbiome and elucidate how it may be associated with PAAD prognosis. We further explored the association between the intra-pancreatic microbiome and smoking and gender, which are both risk factors for PAAD. RNA-sequencing data from The Cancer Genome Atlas (TCGA) were used to infer microbial abundance, which was correlated to clinical variables and to cancer and immune-associated gene expression, to determine how microbes may contribute to cancer progression. We discovered that the presence of several bacteria species within PAAD tumors is linked to metastasis and immune suppression. This is the first large-scale study to report microbiome-immune correlations in human pancreatic cancer samples. Furthermore, we found that the increased prevalence and poorer prognosis of PAAD in males and smokers are linked to the presence of potentially cancer-promoting or immune-inhibiting microbes. Further study into the roles of these microbes in PAAD is imperative for understanding how a pro-tumor microenvironment may be treated to limit cancer progression.

5.
Cancers (Basel) ; 12(6)2020 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-32498338

RESUMEN

The intra-tumor microbiota has been increasingly implicated in cancer pathogenesis. In this study, we aimed to examine the microbiome in lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) and determine its compositional differences with relation to age and gender. After grouping 497 LUAD and 433 LUSC patients by age and gender and removing potential contaminants, we identified differentially abundant microbes in each patient cohort vs. adjacent normal samples. We then correlated dysregulated microbes with patient survival rates, immune infiltration, immune and cancer pathways, and genomic alterations. We found that most age and gender cohorts in both LUAD and LUSC contained unique, significantly dysregulated microbes. For example, LUAD-associated Escherichia coli str. K-12 substr. W3110 was dysregulated in older female and male patients and correlated with both patient survival and genomic alterations. For LUSC, the most prominent bacterial species that we identified was Pseudomonas putida str. KT2440, which was uniquely associated with young LUSC male patients and immune infiltration. In conclusion, we found differentially abundant microbes implicated with age and gender that are also associated with genomic alterations and immune dysregulations. Further investigation should be conducted to determine the relationship between gender and age-associated microbes and the pathogenesis of lung cancer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA