Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 5640, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38454069

RESUMEN

Hysteretic sorption and desorption of water is observed from 0 to 95% relative humidity and 298-333 K on a glassy polyurethane foam. It is postulated that sorption-induced swelling of the glassy polyurethane increases the concentration of accessible hydrogen-bonding adsorption sites for water. The accessibility of sites is kinetically controlled due to the restricted thermal motions of chains in the glassy polymer, causing a difference in accessible site concentrations during sorption and desorption. This discrepancy leads to hysteresis in the sorbed concentrations of water. A coupled chemo-mechanical model relating volumetric strain, adsorption site concentration, and sorbed water concentration is employed to describe water sorption hysteresis in the glassy polyurethane. This model not only describes the final mass uptake for each relative humidity step, but also captures the dynamics of water uptake, which exhibit diffusion and relaxation rate-controlled regimes.

2.
ACS Appl Mater Interfaces ; 15(23): 28716-28730, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37221453

RESUMEN

Bare aluminum metal surfaces are highly reactive, which leads to the spontaneous formation of a protective oxide surface layer. Because many subsequent corrosive processes are mediated by water, the structure and dynamics of water at the oxide interface are anticipated to influence corrosion kinetics. Using molecular dynamics simulations with a reactive force field, we model the behavior of aqueous aluminum metal ions in water adsorbed onto aluminum oxide surfaces across a range of ion concentrations and water film thicknesses corresponding to increasing relative humidity. We find that the structure and diffusivity of both the water and the metal ions depend strongly on the humidity of the environment and the relative height within the adsorbed water film. Aqueous aluminum ion diffusion rates in water films corresponding to a typical indoor relative humidity of 30% are found to be more than 2 orders of magnitude slower than self-diffusion of water in the bulk limit. Connections between metal ion diffusivity and corrosion reaction kinetics are assessed parametrically with a reductionist model based on a 1D continuum reaction-diffusion equation. Our results highlight the importance of incorporating the properties specific to interfacial water in predictive models of aluminum corrosion.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA