Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mater Horiz ; 10(12): 5796-5804, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-37815428

RESUMEN

The industrial adoption of low-carbon technologies and renewable electricity requires novel tools for electrifying unitary steps and efficient energy storage, such as the catalytic synthesis of valuable chemical carriers. The recently-discovered use of microwaves as an effective reducing agent of solid materials provides a novel framework to improve this chemical-conversion route, thanks to promoting oxygen-vacancy formation and O2-surface exchange at low temperatures. However, many efforts are still required to boost the redox properties and process efficiency. Here, we scrutinise the dynamics and the physicochemical dependencies governing microwave-induced redox transformations on solid-state ion-conducting materials. The reduction is triggered upon a material-dependent induction temperature, leading to a characteristically abrupt rise in electric conductivity. This work reveals that the released O2 yield strongly depends on the material's composition and can be tuned by controlling the gas-environment composition and the intensity of the microwave power. The reduction effect prevails at the grain surface level and, thus, amplifies for fine-grained materials, and this is ascribed to limitations in oxygen-vacancy diffusion across the grain compared to a microwave-enhanced surface evacuation. The precise cyclability and stability of the redox process will enable multiple applications like gas depuration, energy storage, or hydrogen generation in several industrial applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA