Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Antioxidants (Basel) ; 13(9)2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39334713

RESUMEN

Milk and its derivatives are included in a balanced diet of humans as excellent sources of proteins, vitamins, and essential minerals that are functional nutrients. Knowledge about the nutritional benefits or harms due to milk consumption has been expanding in recent years. We previously explored, in rodent models, the metabolic effects of isoenergetic intake of milk derived from cows, donkeys, or humans, while the impact of goat's milk intake has remained unexplored. The aim of this work was to investigate, in an animal model, the effects of dietary supplementation with goat's milk on energy homeostasis and inflammatory state, focusing on the modulation of mitochondrial functions in most metabolically active organs, such as skeletal muscle and the liver. In addition, we highlighted a link between nutrient intake, substrate metabolism, and the orexinergic system. Our results indicate that goat milk improves mitochondrial oxidative capacity and reduces inflammation and oxidative stress in both organs. Notably, goat milk lowers the circulating levels of Orexin-A, a neuropeptide that plays a crucial role in regulating peripheral energy balance and central nervous system mechanisms. These data provide the first evidence that the anti-inflammatory and antioxidant effects of goat milk are mediated by the modulation of mitochondrial functions and orexinergic signaling.

2.
Front Biosci (Landmark Ed) ; 29(8): 277, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39206908

RESUMEN

Bulimia nervosa (BN) is a condition marked by a typical cyclical behavioural activity, characterized by restrictions, binges and vomiting, as well as a disturbance of the emotional value of food. Food stimuli acquire excessive relevance, giving rise to a succession of states of excitement and anxiety. The depressive condition accompanies very often BN. Most people with BN also experience one or more anxiety disorders. The aim of the review is to identify a link at a central and peripheral level that connects an eating disorder with a mood state. Altered nervous mechanisms are involved in BN. Among the cerebral areas, the insula is functionally compromised in BN. The insula is also implicated in depressive states. The insula is the primary gustatory cortex, where gustatory sensory information such as taste discrimination and higher cognitive functions such as food anticipation and reward are processed. The insula is anatomically connected to a wide range of cortical, limbic and paralimbic structures, and functionally implicated in high-order cognition, emotional responses, and empathic processes. The insula plays a crucial role in empathy, or in the ability to share the emotional states of others, and in particular negative emotions. In fact, the insular cortex is also activated in conditions of anxiety and depression. One of the pathophysiological factors that influences bulimia and depression is the composition of gut microbiota, as there is a strong association between the microbial signature and the brain function. Gut dysbiosis condition may contribute to the development of eating disorders, including BN. Dysbiosis may promote intestinal inflammation, alter gut permeability, and trigger immune reactions in the hunger/satiety regulation center contributing to the pathophysiological development of eating disorders. From this emerges the importance of adequate probiotic integration as a preventive and/or therapeutic tool in these pathologies.


Asunto(s)
Encéfalo , Bulimia Nerviosa , Depresión , Microbioma Gastrointestinal , Humanos , Microbioma Gastrointestinal/fisiología , Bulimia Nerviosa/fisiopatología , Bulimia Nerviosa/microbiología , Bulimia Nerviosa/psicología , Depresión/fisiopatología , Depresión/microbiología , Encéfalo/fisiopatología , Eje Cerebro-Intestino/fisiología
3.
J Nutr Biochem ; 128: 109624, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38518858

RESUMEN

Brain plasticity and cognitive functions are tightly influenced by foods or nutrients, which determine a metabolic modulation having a long-term effect on health, involving also epigenetic mechanisms. Breast milk or formula based on cow milk is the first food for human beings, who, throughout their lives, are then exposed to different types of milk. We previously demonstrated that rats fed with milk derived from distinct species, with different compositions and nutritional properties, display selective modulation of systemic metabolic and inflammatory profiles through changes of mitochondrial functions and redox state in liver, skeletal and cardiac muscle. Here, in a rat model, we demonstrated that isoenergetic supplementation of milk from cow (CM), donkey (DM) or human (HM) impacts mitochondrial functions and redox state in the brain cortex and cortical synapses, affecting neuroinflammation and synaptic plasticity. Interestingly, we found that the administration of different milk modulates DNA methylation in rat brain cortex and consequently affects gene expression. Our results emphasize the importance of nutrition in brain and synapse physiology, and highlight the key role played in this context by mitochondria, nutrient-sensitive organelles able to orchestrate metabolic and inflammatory responses.


Asunto(s)
Corteza Cerebral , Metilación de ADN , Leche , Mitocondrias , Sinapsis , Animales , Corteza Cerebral/metabolismo , Leche/química , Leche/metabolismo , Mitocondrias/metabolismo , Sinapsis/metabolismo , Ratas , Masculino , Plasticidad Neuronal , Enfermedades Neuroinflamatorias/metabolismo , Femenino , Ratas Wistar , Bovinos
4.
Front Immunol ; 15: 1334006, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38464536

RESUMEN

Metabolism and immunity are crucial monitors of the whole-body homeodynamics. All cells require energy to perform their basic functions. One of the most important metabolic skills of the cell is the ability to optimally adapt metabolism according to demand or availability, known as metabolic flexibility. The immune cells, first line of host defense that circulate in the body and migrate between tissues, need to function also in environments in which nutrients are not always available. The resilience of immune cells consists precisely in their high adaptive capacity, a challenge that arises especially in the framework of sustained immune responses. Pubmed and Scopus databases were consulted to construct the extensive background explored in this review, from the Kennedy and Lehninger studies on mitochondrial biochemistry of the 1950s to the most recent findings on immunometabolism. In detail, we first focus on how metabolic reconfiguration influences the action steps of the immune system and modulates immune cell fate and function. Then, we highlighted the evidence for considering mitochondria, besides conventional cellular energy suppliers, as the powerhouses of immunometabolism. Finally, we explored the main immunometabolic hubs in the organism emphasizing in them the reciprocal impact between metabolic and immune components in both physiological and pathological conditions.


Asunto(s)
Sistema Inmunológico , Mitocondrias , Mitocondrias/metabolismo , Metabolismo Energético
5.
Nutrients ; 15(22)2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-38004155

RESUMEN

We investigated the influence of varying dietary polyunsaturated fatty acid (PUFA)/saturated fatty acids (SFA) ratios on insulin resistance (IR), fatty acid metabolism, N-acylethanolamine (NAE) bioactive metabolite levels, and mitochondrial function in lean and obese Zucker rats in a model designed to study obesity and IR from overnutrition. We provided diets with 7% fat (w/w), with either a low PUFA/SFA ratio of 0.48, predominantly comprising palmitic acid (PA), (diet-PA), or the standard AIN-93G diet with a high PUFA/SFA ratio of 3.66 (control, diet-C) over eight weeks. In obese rats on diet-PA versus diet-C, there were reductions in plasma triglycerides, cholesterol, glucose, insulin concentrations and improved muscle mitochondrial function, inflammatory markers and increased muscle N-oleoylethanolamine (OEA), a bioactive lipid that modulates lipid metabolism and metabolic flexibility. Elevated palmitic acid levels were found exclusively in obese rats, regardless of their diet, implying an endogenous production through de novo lipogenesis rather than from a dietary origin. In conclusion, a reduced dietary PUFA/SFA ratio positively influenced glucose and lipid metabolism without affecting long-term PA tissue concentrations. This likely occurs due to an increase in OEA biosynthesis, improving metabolic flexibility in obese rats. Our results hint at a pivotal role for balanced dietary PA in countering the effects of overnutrition-induced obesity.


Asunto(s)
Ácidos Grasos , Resistencia a la Insulina , Ratas , Animales , Ácidos Grasos/metabolismo , Ratas Zucker , Grasas de la Dieta/farmacología , Ácidos Grasos Insaturados/metabolismo , Obesidad/metabolismo , Dieta , Resistencia a la Insulina/fisiología , Metabolismo de los Lípidos , Glucosa , Ácidos Palmíticos
6.
J Funct Morphol Kinesiol ; 8(3)2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37606402

RESUMEN

The correct assessment of body composition is essential for an accurate diagnostic evaluation of nutritional status. The body mass index (BMI) is the most widely adopted indicator for evaluating undernutrition, overweight, and obesity, but it is unsuitable for differentiating changes in body composition. In recent times, bioelectrical impedance analyses (BIA) have been proven as a more accurate procedure for the assessment of body composition. Furthermore, the efficiency of bioelectrical impedance vector analyses, as an indicator of nutritional status and hydration, has been demonstrated. By applying a bioimpedance analysis, it is possible to detect fat mass (FM), fat free mass (FFM), phase angle, and body cell mass (BCM). It is important to point out that phase angle and BCM are strongly associated with health status. The aim of this research was to examine body composition and the association between the phase angle and BCM in 87 subjects (14 males and 73 females), aged between 23 and 54 years, with BMIs ranging from 17.0 to 32.0 kg/m2, according to sex. The BMI results revealed that the majority of the assessed subjects were within the normal range and had a normal percentage of FM. Our data indicate that a direct relation exists between phase angle and cellular health and that these values increase almost linearly. Consequently, a high phase angle may be related to increased BCM values.

7.
Nutrients ; 15(16)2023 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-37630841

RESUMEN

Milk is an important source of nutrients and energy, but there are still many uncertainties regarding the health effects of milk and dairy products consumption. Milk from different species varies in physicochemical and nutritional properties. We previously showed that dietary supplements with different milks in rats trigger significant differences in metabolic and inflammatory states, modulating mitochondrial functions in metabolically active organs such as the liver and skeletal muscle. Here, we have deepened the effects of isoenergetic supplementation of milk (82 kJ) from cow (CM), donkey (DM) or human (HM) on hepatic metabolism to understand the interlink between mitochondrial metabolic flexibility, lipid storage and redox state and to highlight the possible role of two hepatocyte aquaporins (AQPs) of metabolic relevance, AQP8 and AQP9, in this crosstalk. Compared with rats with no milk supplementation, DM- and HM-fed rats had reduced hepatic lipid content with enhanced mitochondrial function and decreased oxidative stress. A marked reduction in AQP8, a hydrogen peroxide channel, was seen in the liver mitochondria of DM-fed rats compared with HM-fed, CM-fed and control animals. DM-fed or HM-fed rats also showed reduced hepatic inflammatory markers and less collagen and Kupffer cells. CM-fed rats showed higher hepatic fat content and increased AQP9 and glycerol permeability. A role of liver AQP8 and AQP9 is suggested in the different metabolic profiles resulting from milk supplementation.


Asunto(s)
Acuaporinas , Hígado , Bovinos , Femenino , Humanos , Animales , Ratas , Hepatocitos , Oxidación-Reducción , Suplementos Dietéticos , Glucosa , Lípidos
8.
Antioxidants (Basel) ; 12(6)2023 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-37371902

RESUMEN

Obesity is a major risk factor for several metabolic diseases, including type 2 diabetes, hyperlipidemia, cardiovascular diseases, and brain disorders. Growing evidence suggests the importance of inter-organ metabolic communication for the progression of obesity and the subsequent onset of related disorders. This review provides a broad overview of the pathophysiological processes that from adipose tissue dysfunction leading to altered multi-tissue crosstalk relevant to regulating energy homeostasis and the etiology of obesity. First, a comprehensive description of the role of adipose tissue was reported. Then, attention was turned toward the unhealthy expansion of adipose tissue, low-grade inflammatory state, metabolic inflexibility, and mitochondrial dysfunction as root causes of systemic metabolic alterations. In addition, a short spot was devoted to iron deficiency in obese conditions and the role of the hepcidin-ferroportin relationship in the management of this issue. Finally, different classes of bioactive food components were described with a perspective to enhance their potential preventive and therapeutic use against obesity-related diseases.

9.
Nutrients ; 15(10)2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37242147

RESUMEN

A thorough knowledge of body composition assessment techniques is the cornerstone for initiating a customized nutritional program. The second step is to consider the potential of their application in different physiological and pathological conditions and their effectiveness in the management of a monitoring pathway during dietary interventions. To date, bioimpedance analysis is the most effective and reliable method for assessing body composition due to its advantages in terms of speed of execution, non-invasiveness and low cost. Therefore, this review article aims to analyze the main concepts and application areas of bioimpedance measurement techniques, in particular vector frequency-based analysis (BIVA) systems, in order to assess their validity in both physiological and pathological conditions.


Asunto(s)
Composición Corporal , Estado Nutricional , Impedancia Eléctrica
10.
Front Biosci (Landmark Ed) ; 28(2): 41, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36866551

RESUMEN

The aim of this review is to provide an overview of different compositions, in terms of main minerals and vitamins, of milk from animal species that represent the most common source of this food for humans, highlighting the uniqueness of nutritional qualities linked to animal species. It is known that milk is an important and valuable food for human nutrition, representing an excellent source of nutrients. Indeed, it contains both macronutrients (proteins, carbohydrates, and fat) that contribute to its nutritive and biological value and micronutrients represented by minerals and vitamins, which play a relevant role in the body's various vital functions. Although their supply is represented by small quantities, vitamins and minerals are important components for a healthy diet. Milk composition in terms of minerals and vitamins differs between various animal species. Micronutrients are important components for human health as their deficiency is causes of malnutrition. Furthermore, we report on the most significant metabolic and beneficial effects of certain micronutrients in the milk, emphasizing the importance of this food for human health and the need for some milk enrichment procedures with the most relevant micronutrients to human health.


Asunto(s)
Micronutrientes , Leche , Animales , Humanos , Vitaminas , Investigación , Vitamina A , Vitamina K
11.
Int J Mol Sci ; 24(3)2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36769289

RESUMEN

Obesity is considered an epidemic disorder, due to an imbalance between energy consumption and metabolizable energy intake. This balance is increasingly disrupted during normal aging processes due to the progressive impairment of mechanisms that normally control energy homeostasis. Obesity is triggered by an excessive lipid depots but reflects systemic inflammation along with large adipocytes secreting proinflammatory adipokines, an increase of the free fatty acids levels in the bloodstream, and ectopic lipid accumulation. Hepatic fat accumulation is the most common cause of chronic liver disease, characterized by mitochondrial dysfunction with a consequent impaired fat metabolism and increased oxidative stress. Therefore, mitochondrial dysfunction is associated to hepatic lipid accumulation and related complications. In this study, we assessed the crosstalk between adipose tissue and liver, analyzing the time-course of changes in hepatic mitochondrial fatty acid oxidation capacity versus fatty acid storage, focusing on the contribution of adipose tissue inflammation to hepatic lipid accumulation, using a rodent model of high fat diet-induced obesity. Our results demonstrate that both high-fat diet-induced obesity and aging induce dysregulation of adipose tissue function and similar metabolic alterations mediated by mitochondrial function impairment and altered inflammatory profile. The high fat diet-induced obesity anticipates and exacerbates liver mitochondrial dysfunction that occurs with aging processes.


Asunto(s)
Dieta Alta en Grasa , Hígado , Ratas , Animales , Dieta Alta en Grasa/efectos adversos , Hígado/metabolismo , Tejido Adiposo/metabolismo , Inflamación/metabolismo , Obesidad/metabolismo , Mitocondrias/metabolismo , Envejecimiento , Ácidos Grasos/metabolismo , Lípidos
12.
J Integr Neurosci ; 22(6): 148, 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-38176933

RESUMEN

Great interest is aimed at understanding the inflammatory responses at the level of the central nervous system (CNS), referred to as neuroinflammatory. The environment and the duration of the inflammatory responses are essential factors for comprehending the biochemical and pathophysiological consequences induced by the inflammatory state. Specific inducers of inflammation associated with neurodegenerative disorders can activate inflammatory processes and produce mediators that potentiate neurodegeneration. Immune responders in the brain include microglial cells, astrocytes, and mast cells. A number of human pathologies are recognized to have an inflammatory component, including disorders related to brain function. Emerging evidence also attributes an important role to intestinal microorganisms in disorders related to brain function. In the gut-brain axis, the intestinal microbiota produce a variety of molecules and neurotransmitters, transform primary bile acids into secondary bile, and synthesize short-chain fatty acids. Communication within the gut-brain axis occurs through several pathways, including the immune system, the enteric nervous system, the vagus nerve, and the production of microbial metabolites. The CNS responds to this input from the gut by modulating the activity of the autonomic nervous system and the hypothalamic-pituitary-adrenal axis, which manages adrenocortical hormones. In this perspective, gut microbiota may influence neural function by influencing microglia, astroglia, and mast cells. Conversely, the relationship between neurons, microglia and synaptic alteration may also involve gut microbiota. The purpose of this review is to provide a concise overview of the mechanisms involved in communication between intestinal microbiota and the brain and how this contributes to the management of neuroinflammation.


Asunto(s)
Microbioma Gastrointestinal , Humanos , Enfermedades Neuroinflamatorias , Sistema Hipotálamo-Hipofisario , Sistema Hipófiso-Suprarrenal , Encéfalo/fisiología
13.
Antioxidants (Basel) ; 11(10)2022 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-36290713

RESUMEN

The role of the liver in autism spectrum disorders (ASD), developmental disabilities characterized by impairments in social interactions and repetitive behavioral patterns, has been poorly investigated. In ASD, it has been shown a dysregulation of gut-brain crosstalk, a communication system able to influence metabolic homeostasis, as well as brain development, mood and cognitive functions. The liver, with its key role in inflammatory and metabolic states, represents the crucial metabolic organ in this crosstalk. Indeed, through the portal vein, the liver receives not only nutrients but also numerous factors derived from the gut and visceral adipose tissue, which modulate metabolism and hepatic mitochondrial functions. Here, we investigated, in an animal model of ASD (BTBR mice), the involvement of hepatic mitochondria in the regulation of inflammatory state and liver damage. We observed increased inflammation and oxidative stress linked to hepatic mitochondrial dysfunction, steatotic hepatocytes, and marked mitochondrial fission in BTBR mice. Our preliminary study provides a better understanding of the pathophysiology of ASD and could open the way to identifying hepatic mitochondria as targets for innovative therapeutic strategies for the disease.

14.
Antioxidants (Basel) ; 12(1)2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36670866

RESUMEN

Neurodegenerative diseases (NDDs) are characterized by cognitive impairment and behavioural abnormalities. The incidence of NDDs in recent years has increased globally and the pathological mechanism is not fully understood. To date, plentiful evidence has showed that metabolic alterations associated with obesity and related issues such as neuroinflammation, oxidative stress and mitochondrial dysfunction may represent an important risk factor, linking obesity and NDDs. Numerous studies have indicated a correlation between diet and brain activities. In this context, a key role is played by mitochondria located in the synaptic fraction; indeed, it has been shown that high-fat diets cause their dysfunction, affecting synaptic plasticity. In this scenario, the use of natural molecules that improve brain mitochondrial function represents an important therapeutic approach to treat NDDs. Recently, it was demonstrated that butyrate, a short-chain fatty acid is capable of counteracting obesity in an animal model, modulating mitochondrial function. The aim of this study has been to evaluate the effects of butyrate on neuroinflammatory state, oxidative stress and mitochondrial dysfunction in the brain cortex and in the synaptic fraction of a mouse model of diet-induced obesity. Our data have shown that butyrate partially reverts neuroinflammation and oxidative stress in the brain cortex and synaptic area, improving mitochondrial function and efficiency.

15.
Antioxidants (Basel) ; 10(11)2021 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-34829678

RESUMEN

The biological mechanisms linking nutrition and antioxidants content of the diet with cardiovascular protection are subject of intense investigation. It has been demonstrated that dietary supplementation with cow, donkey or human milk, characterized by distinct nutritional properties, triggers significant differences in the metabolic and inflammatory status through the modulation of hepatic and skeletal muscle mitochondrial functions. Cardiac mitochondria play a key role for energy-demanding heart functions, and their disfunctions is leading to pathologies. Indeed, an altered heart mitochondrial function and the consequent increased reactive oxygen species (ROS) production and inflammatory state, is linked to several cardiac diseases such as hypertension and heart failure. In this work it was investigated the impact of the milk consumption on heart mitochondrial functions, inflammation and oxidative stress. In addition, it was underlined the crosstalk between mitochondrial metabolic flexibility, lipid storage and redox status as control mechanisms for the maintenance of cardiovascular health.

16.
Sci Rep ; 11(1): 7404, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33795775

RESUMEN

Accumulating evidence suggests that modifications of gut function and microbiota composition might play a pivotal role in the pathophysiology of several cardiovascular diseases, including heart failure (HF). In this study we systematically analysed gut microbiota composition, intestinal barrier integrity, intestinal and serum cytokines and serum endotoxin levels in C57BL/6 mice undergoing pressure overload by transverse aortic constriction (TAC) for 1 and 4 weeks. Compared to sham-operated animals, TAC induced prompt and strong weakening of intestinal barrier integrity, long-lasting decrease of colon anti-inflammatory cytokine levels, significant increases of serum levels of bacterial lipopolysaccharide and proinflammatory cytokines. TAC also exerted effects on microbiota composition, inducing significant differences in bacterial genera inside Actinobacteria, Firmicutes, Proteobacteria and TM7 phyla as shown by 16S rDNA sequencing of fecal samples from TAC or sham mice. These results suggest that gut modifications represent an important element to be considered in the development and progression of cardiac dysfunction in response to TAC and support this animal model as a valuable tool to establish the role and mechanisms of gut-heart crosstalk in HF. Evidence arising in this field might identify new treatment options targeting gut integrity and microbiota components to face adverse cardiac events.


Asunto(s)
Estenosis de la Válvula Aórtica/complicaciones , Microbioma Gastrointestinal , Inflamación/etiología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Animales , Estenosis de la Válvula Aórtica/diagnóstico , Biomarcadores , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Disbiosis , Ecocardiografía , Heces/microbiología , Insuficiencia Cardíaca/diagnóstico , Insuficiencia Cardíaca/etiología , Pruebas de Función Cardíaca , Inflamación/metabolismo , Inflamación/patología , Metagenoma , Metagenómica/métodos , Ratones , Permeabilidad , Remodelación Ventricular
17.
Int J Mol Sci ; 22(5)2021 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-33807720

RESUMEN

Inside the adult CNS, oligodendrocyte progenitor cells (OPCS) are able to proliferate, migrate and differentiate into mature oligodendrocytes (OLs) which are responsible for the production of myelin sheet and energy supply for neurons. Moreover, in demyelinating diseases, OPCs are recruited to the lesion areas where they undergo differentiation and myelin synthesis. Serotonin (5-hydroxytryptamine, 5-HT) is involved in OLs' development and myelination, but so far the molecular mechanisms involved or the effects of 5-HT on mitochondria function have not yet been well documented. Our data show that 5-HT inhibits migration and proliferation committing cells toward differentiation in an immortalized human oligodendrocyte precursor cell line, M03-13. Migration blockage is mediated by reactive oxygen species (ROS) generation since antioxidants, such as Vit C and Cu-Zn superoxide dismutase, prevent the inhibitory effects of 5-HT on cell migration. 5-HT inhibits OPC migration and proliferation and increases OL phenotypic markers myelin basic protein (MBP) and Olig-2 via protein kinase C (PKC) activation since the inhibitor of PKC, bis-indolyl-maleimide (BIM), counteracts 5-HT effects. NOX inhibitors as well, reverse the effects of 5-HT, indicating that 5-HT influences the maturation process of OPCs by NOX-dependent ROS production. Finally, 5-HT increases mitochondria function and antioxidant activity. The identification of the molecular mechanisms underlying the effects of 5-HT on maturation and energy metabolism of OPCs could pave the way for the development of new treatments for autoimmune demyelinating diseases such as Multiple Sclerosis where oligodendrocytes are the primary target of immune attack.


Asunto(s)
Mitocondrias/metabolismo , Oligodendroglía/metabolismo , Serotonina/farmacología , Células Madre/metabolismo , Línea Celular , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Humanos , Proteína Básica de Mielina/metabolismo , Factor de Transcripción 2 de los Oligodendrocitos/metabolismo , Especies Reactivas de Oxígeno/metabolismo
18.
Int J Mol Sci ; 22(6)2021 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-33799812

RESUMEN

Obesity and associated metabolic disturbances, which have been increasing worldwide in recent years, are the consequences of unhealthy diets and physical inactivity and are the main factors underlying non-communicable diseases (NCD). These diseases are now responsible for about three out of five deaths worldwide, and it has been shown that they depend on mitochondrial dysfunction, systemic inflammation and oxidative stress. It was also demonstrated that several nutritional components modulating these processes are able to influence metabolic homeostasis and, consequently, to prevent or delay the onset of NCD. An interesting combination of nutraceutical substances, named DMG-gold, has been shown to promote metabolic and physical wellness. The aim of this research was to investigate the metabolic, inflammatory and oxidative pathways modulated by DMG-gold in an animal model with diet-induced obesity. Our data indicate that DMG-gold decreases the metabolic efficiency and inflammatory state and acts as an antioxidant and detoxifying agent, modulating mitochondrial functions. Therefore, DMG-gold is a promising candidate in the prevention/treatment of NCD.


Asunto(s)
Dieta , Suplementos Dietéticos , Micronutrientes/análisis , Mitocondrias/efectos de los fármacos , Obesidad/prevención & control , Animales , Antioxidantes/administración & dosificación , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Humanos , Inflamación/etiología , Inflamación/metabolismo , Inflamación/prevención & control , Masculino , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Mitocondrias/fisiología , Obesidad/etiología , Obesidad/metabolismo , Oxidación-Reducción/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos
19.
Nutrients ; 13(4)2021 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-33800688

RESUMEN

Milk contains several important nutrients that are beneficial for human health. This review considers the nutritional qualities of essential fatty acids (FAs), especially omega-3 (ω-3) and omega-6 (ω-6) polyunsaturated fatty acids (PUFAs) present in milk from ruminant and non-ruminant species. In particular, the impact of milk fatty acids on metabolism is discussed, including its effects on the central nervous system. In addition, we presented data indicating how animal feeding-the main way to modify milk fat composition-may have a potential impact on human health, and how rearing and feeding systems strongly affect milk quality within the same animal species. Finally, we have presented the results of in vivo studies aimed at supporting the beneficial effects of milk FA intake in animal models, and the factors limiting their transferability to humans were discussed.


Asunto(s)
Ácidos Grasos Esenciales/análisis , Ácidos Grasos Omega-3/análisis , Ácidos Grasos Omega-6/análisis , Leche/química , Alimentación Animal , Animales , Encéfalo/metabolismo , Conducta Alimentaria/fisiología , Humanos , Fenómenos Fisiológicos de la Nutrición/fisiología
20.
Antioxidants (Basel) ; 9(12)2020 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-33265944

RESUMEN

Lines of evidence have shown the embryogenic and transgenerational impact of bisphenol A (BPA), an endocrine-disrupting chemical, on immune-metabolic alterations, inflammation, and oxidative stress, while BPA toxic effects in adult obese mice are still overlooked. Here, we evaluate BPA's worsening effect on several hepatic maladaptive processes associated to high-fat diet (HFD)-induced obesity in mice. After 12 weeks HFD feeding, C57Bl/6J male mice were exposed daily to BPA (50 µg/kg per os) along with HFD for 3 weeks. Glucose tolerance and lipid metabolism were examined in serum and/or liver. Hepatic oxidative damage (reactive oxygen species, malondialdehyde, antioxidant enzymes), and mitochondrial respiratory capacity were evaluated. Moreover, liver damage progression and inflammatory/immune response were determined by histological and molecular analysis. BPA amplified HFD-induced alteration of key factors involved in glucose and lipid metabolism, liver triglycerides accumulation, and worsened mitochondrial dysfunction by increasing oxidative stress and reducing antioxidant defense. The exacerbation by BPA of hepatic immune-metabolic dysfunction induced by HFD was shown by increased toll-like receptor-4 and its downstream pathways (i.e., NF-kB and NLRP3 inflammasome) amplifying inflammatory cytokine transcription and promoting fibrosis progression. This study evidences that BPA exposure represents an additional risk factor for the progression of fatty liver diseases strictly related to the cross-talk between oxidative stress and immune-metabolic impairment due to obesity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA