Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Theor Appl Genet ; 134(7): 2235-2252, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33903985

RESUMEN

KEY MESSAGE: Non-additive genetic effects seem to play a substantial role in the expression of complex traits in sugarcane. Including non-additive effects in genomic prediction models significantly improves the prediction accuracy of clonal performance. In the recent decade, genetic progress has been slow in sugarcane. One reason might be that non-additive genetic effects contribute substantially to complex traits. Dense marker information provides the opportunity to exploit non-additive effects in genomic prediction. In this study, a series of genomic best linear unbiased prediction (GBLUP) models that account for additive and non-additive effects were assessed to improve the accuracy of clonal prediction. The reproducible kernel Hilbert space model, which captures non-additive genetic effects, was also tested. The models were compared using 3,006 genotyped elite clones measured for cane per hectare (TCH), commercial cane sugar (CCS), and Fibre content. Three forward prediction scenarios were considered to investigate the robustness of genomic prediction. By using a pseudo-diploid parameterization, we found significant non-additive effects that accounted for almost two-thirds of the total genetic variance for TCH. Average heterozygosity also had a major impact on TCH, indicating that directional dominance may be an important source of phenotypic variation for this trait. The extended-GBLUP model improved the prediction accuracies by at least 17% for TCH, but no improvement was observed for CCS and Fibre. Our results imply that non-additive genetic variance is important for complex traits in sugarcane, although further work is required to better understand the variance component partitioning in a highly polyploid context. Genomics-based breeding will likely benefit from exploiting non-additive genetic effects, especially in designing crossing schemes. These findings can help to improve clonal prediction, enabling a more accurate identification of variety candidates for the sugarcane industry.


Asunto(s)
Genómica , Modelos Genéticos , Saccharum/genética , Variación Genética , Genotipo , Fenotipo , Fitomejoramiento
2.
Theor Appl Genet ; 134(5): 1455-1462, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33590303

RESUMEN

KEY MESSAGE: Complex traits in sugarcane can be accurately predicted using genome-wide DNA markers. Genomic single-step prediction is an attractive method for genomic selection in commercial breeding programs. Sugarcane breeding programs have achieved up to 1% genetic gain in key traits such as tonnes of cane per hectare (TCH), commercial cane sugar (CCS) and Fibre content over the past decades. Here, we assess the potential of genomic selection to increase the rate of genetic gain for these traits by deriving genomic estimated breeding values (GEBVs) from a reference population of 3984 clones genotyped for 26 K SNP. We evaluated the three different genomic prediction approaches GBLUP, genomic single step (GenomicSS), and BayesR. GenomicSS combining pedigree and SNP information from historic and recent breeding programs achieved the most accurate predictions for most traits (0.3-0.44). This method is attractive for routine genetic evaluation because it requires relatively little modification to the existing evaluation and results in breeding value estimates for all individuals, not only those genotyped. Adding information from early-stage trials added up to 5% accuracy for CCS and Fibre, but 0% for TCH, reflecting the importance of competition effects for TCH. These GEBV accuracies are sufficiently high that, combined with the right breeding strategy, a doubling of the rate of genetic gain could be achieved. We also assessed the flowering traits days to flowering, gender and pollen viability and found high heritabilities of 0.57, 0.78 and 0.72, respectively. The GEBV accuracies indicated that genomic selection could be used to improve these traits. This could open new avenues for breeders to manage their breeding programs, for example, by synchronising flowering time and selecting males with high pollen viability.


Asunto(s)
Cromosomas de las Plantas/genética , Genoma de Planta , Herencia Multifactorial , Fitomejoramiento/métodos , Polimorfismo de Nucleótido Simple , Carácter Cuantitativo Heredable , Saccharum/genética , Mapeo Cromosómico/métodos , Flores/genética , Flores/crecimiento & desarrollo , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas , Genética de Población , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Saccharum/crecimiento & desarrollo , Saccharum/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA