Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Neuro Oncol ; 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38970818

RESUMEN

PET imaging, particularly using amino acid tracers, has become a valuable adjunct to anatomical MRI in the clinical management of patients with glioma. Collaborative international efforts have led to the development of clinical and technical guidelines for PET imaging in gliomas. The increasing readiness of statutory health insurance agencies, especially in European countries, to reimburse amino acid PET underscores its growing importance in clinical practice. Integrating artificial intelligence and radiomics in PET imaging of patients with glioma may significantly improve tumor detection, segmentation, and response assessment. Efforts are ongoing to facilitate the clinical translation of these techniques. Considerable progress in computer technology developments (eg quantum computers) may be helpful to accelerate these efforts. Next-generation PET scanners, such as long-axial field-of-view PET/CT scanners, have improved image quality and body coverage and therefore expanded the spectrum of indications for PET imaging in Neuro-Oncology (eg PET imaging of the whole spine). Encouraging results of clinical trials in patients with glioma have prompted the development of PET tracers directing therapeutically relevant targets (eg the mutant isocitrate dehydrogenase) for novel anticancer agents in gliomas to improve response assessment. In addition, the success of theranostics for the treatment of extracranial neoplasms such as neuroendocrine tumors and prostate cancer has currently prompted efforts to translate this approach to patients with glioma. These advancements highlight the evolving role of PET imaging in Neuro-Oncology, offering insights into tumor biology and treatment response, thereby informing personalized patient care. Nevertheless, these innovations warrant further validation in the near future.

2.
J Nucl Med ; 65(6): 838-844, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38664020

RESUMEN

PET using the radiolabeled amino acid O-(2-[18F]fluoroethyl)-l-tyrosine (18F-FET) has been shown to be of value for treatment monitoring in patients with brain metastases after multimodal therapy, especially in clinical situations with equivocal MRI findings. As medical procedures must be justified socioeconomically, we determined the effectiveness and cost-effectiveness of 18F-FET PET for treatment monitoring of multimodal therapy, including checkpoint inhibitors, targeted therapies, radiotherapy, and combinations thereof in patients with brain metastases secondary to melanoma or non-small cell lung cancer. Methods: We analyzed already-published clinical data and calculated the associated costs from the German statutory health insurance system perspective. Two clinical scenarios were considered: decision tree model 1 determined the effectiveness of 18F-FET PET alone for identifying treatment-related changes, that is, the probability of correctly identifying patients with treatment-related changes confirmed by neuropathology or clinicoradiographically using the Response Assessment in Neuro-Oncology criteria for immunotherapy. The resulting cost-effectiveness ratio showed the cost for each correctly identified patient with treatment-related changes in whom MRI findings remained inconclusive. Decision tree model 2 calculated the effectiveness of both 18F-FET PET and MRI, that is, the probability of correctly identifying nonresponders to treatment. The incremental cost-effectiveness ratio was calculated to determine cost-effectiveness, that is, the cost for each additionally identified nonresponder by 18F-FET PET who would have remained undetected by MRI. One-way deterministic and probabilistic sensitivity analyses tested the robustness of the results. Results: 18F-FET PET identified 94% of patients with treatment-related changes, resulting in €1,664.23 (€1.00 = $1.08 at time of writing) for each correctly identified patient. Nonresponders were correctly identified in 60% by MRI and in 80% by 18F-FET PET, resulting in €3,292.67 and €3,915.83 for each correctly identified nonresponder by MRI and 18F-FET PET, respectively. The cost to correctly identify 1 additional nonresponder by 18F-FET PET, who would have remained unidentified by MRI, was €5,785.30. Conclusion: Given the considerable annual cost of multimodal therapy, the integration of 18F-FET PET can potentially improve patient care while reducing costs.


Asunto(s)
Neoplasias Encefálicas , Análisis Costo-Beneficio , Imagen por Resonancia Magnética , Tomografía de Emisión de Positrones , Tirosina , Humanos , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/secundario , Neoplasias Encefálicas/terapia , Tomografía de Emisión de Positrones/economía , Imagen por Resonancia Magnética/economía , Tirosina/análogos & derivados , Tirosina/uso terapéutico , Terapia Combinada , Imagen Multimodal/economía , Masculino , Femenino , Análisis de Costo-Efectividad
3.
J Nucl Med ; 64(10): 1594-1602, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37562802

RESUMEN

Evaluation of metabolic tumor volume (MTV) changes using amino acid PET has become an important tool for response assessment in brain tumor patients. MTV is usually determined by manual or semiautomatic delineation, which is laborious and may be prone to intra- and interobserver variability. The goal of our study was to develop a method for automated MTV segmentation and to evaluate its performance for response assessment in patients with gliomas. Methods: In total, 699 amino acid PET scans using the tracer O-(2-[18F]fluoroethyl)-l-tyrosine (18F-FET) from 555 brain tumor patients at initial diagnosis or during follow-up were retrospectively evaluated (mainly glioma patients, 76%). 18F-FET PET MTVs were segmented semiautomatically by experienced readers. An artificial neural network (no new U-Net) was configured on 476 scans from 399 patients, and the network performance was evaluated on a test dataset including 223 scans from 156 patients. Surface and volumetric Dice similarity coefficients (DSCs) were used to evaluate segmentation quality. Finally, the network was applied to a recently published 18F-FET PET study on response assessment in glioblastoma patients treated with adjuvant temozolomide chemotherapy for a fully automated response assessment in comparison to an experienced physician. Results: In the test dataset, 92% of lesions with increased uptake (n = 189) and 85% of lesions with iso- or hypometabolic uptake (n = 33) were correctly identified (F1 score, 92%). Single lesions with a contiguous uptake had the highest DSC, followed by lesions with heterogeneous, noncontiguous uptake and multifocal lesions (surface DSC: 0.96, 0.93, and 0.81 respectively; volume DSC: 0.83, 0.77, and 0.67, respectively). Change in MTV, as detected by the automated segmentation, was a significant determinant of disease-free and overall survival, in agreement with the physician's assessment. Conclusion: Our deep learning-based 18F-FET PET segmentation allows reliable, robust, and fully automated evaluation of MTV in brain tumor patients and demonstrates clinical value for automated response assessment.


Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Aminoácidos , Estudios Retrospectivos , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/terapia , Glioma/patología , Radiofármacos/uso terapéutico , Tirosina , Tomografía de Emisión de Positrones/métodos
4.
J Neurooncol ; 162(3): 481-488, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36577872

RESUMEN

PET imaging using radiolabeled amino acids in addition to MRI has become a valuable diagnostic tool in the clinical management of patients with brain tumors. This review provides a comprehensive overview of PET studies in glioma patients with a mutation in the isocitrate dehydrogenase gene (IDH). A considerable fraction of these tumors typically show no contrast enhancement on MRI, especially when classified as grade 2 according to the World Health Organization classification of Central Nervous System tumors. Major diagnostic challenges in this situation are differential diagnosis, target definition for diagnostic biopsies, delineation of glioma extent for treatment planning, differentiation of treatment-related changes from tumor progression, and the evaluation of response to alkylating agents. The main focus of this review is the role of amino acid PET in this setting. Furthermore, in light of clinical trials using IDH inhibitors targeting the mutated IDH enzyme for treating patients with IDH-mutant gliomas, we also aim to give an outlook on PET probes specifically targeting the IDH mutation, which appear potentially helpful for response assessment.


Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Isocitrato Deshidrogenasa/genética , Glioma/diagnóstico por imagen , Glioma/genética , Glioma/terapia , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Tomografía de Emisión de Positrones , Mutación , Aminoácidos/genética
5.
Neuro Oncol ; 25(5): 984-994, 2023 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-36215231

RESUMEN

BACKGROUND: We evaluated O-(2-[18F]fluoroethyl)-l-tyrosine (FET) PET and MRI for early response assessment in recurrent glioma patients treated with lomustine-based chemotherapy. METHODS: Thirty-six adult patients with WHO CNS grade 3 or 4 gliomas (glioblastoma, 69%) at recurrence (median number of recurrences, 1; range, 1-3) were retrospectively identified. Besides MRI, serial FET PET scans were performed at baseline and early after chemotherapy initiation (not later than two cycles). Tumor-to-brain ratios (TBR), metabolic tumor volumes (MTV), the occurrence of new distant hotspots with a mean TBR >1.6 at follow-up, and the dynamic parameter time-to-peak were derived from all FET PET scans. PET parameter thresholds were defined using ROC analyses to predict PFS of ≥6 months and OS of ≥12 months. MRI response assessment was based on RANO criteria. The predictive values of FET PET parameters and RANO criteria were subsequently evaluated using univariate and multivariate survival estimates. RESULTS: After treatment initiation, the median follow-up time was 11 months (range, 3-71 months). Relative changes of TBR, MTV, and RANO criteria predicted a significantly longer PFS (all P ≤ .002) and OS (all P ≤ .045). At follow-up, the occurrence of new distant hotspots (n ≥ 1) predicted a worse outcome, with significantly shorter PFS (P = .005) and OS (P < .001). Time-to-peak changes did not predict a significantly longer survival. Multivariate survival analyses revealed that new distant hotspots at follow-up FET PET were most potent in predicting non-response (P < .001; HR, 8.578). CONCLUSIONS: Data suggest that FET PET provides complementary information to RANO criteria for response evaluation of lomustine-based chemotherapy early after treatment initiation.


Asunto(s)
Neoplasias Encefálicas , Glioma , Adulto , Humanos , Lomustina/uso terapéutico , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Estudios Retrospectivos , Radiofármacos/metabolismo , Glioma/diagnóstico por imagen , Glioma/tratamiento farmacológico , Glioma/metabolismo , Imagen por Resonancia Magnética , Tomografía de Emisión de Positrones , Tirosina/metabolismo
6.
Cancers (Basel) ; 14(14)2022 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-35884396

RESUMEN

O-(2-[18F]fluoroethyl)-L-tyrosine (FET) is a widely used amino acid tracer for positron emission tomography (PET) imaging of brain tumours. This retrospective study and survey aimed to analyse our extensive database regarding the development of FET PET investigations, indications, and the referring physicians' rating concerning the role of FET PET in the clinical decision-making process. Between 2006 and 2019, we performed 6534 FET PET scans on 3928 different patients against a backdrop of growing demand for FET PET. In 2019, indications for the use of FET PET were as follows: suspected recurrent glioma (46%), unclear brain lesions (20%), treatment monitoring (19%), and suspected recurrent brain metastasis (13%). The referring physicians were neurosurgeons (60%), neurologists (19%), radiation oncologists (11%), general oncologists (3%), and other physicians (7%). Most patients travelled 50 to 75 km, but 9% travelled more than 200 km. The role of FET PET in decision-making in clinical practice was evaluated by a questionnaire consisting of 30 questions, which was filled out by 23 referring physicians with long experience in FET PET. Fifty to seventy per cent rated FET PET as being important for different aspects of the assessment of newly diagnosed gliomas, including differential diagnosis, delineation of tumour extent for biopsy guidance, and treatment planning such as surgery or radiotherapy, 95% for the diagnosis of recurrent glioma, and 68% for the diagnosis of recurrent brain metastases. Approximately 50% of the referring physicians rated FET PET as necessary for treatment monitoring in patients with glioma or brain metastases. All referring physicians stated that the availability of FET PET is essential and that it should be approved for routine use. Although the present analysis is limited by the fact that only physicians who frequently referred patients for FET PET participated in the survey, the results confirm the high relevance of FET PET in the clinical diagnosis of brain tumours and support the need for its approval for routine use.

7.
J Neurooncol ; 159(2): 309-317, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35716310

RESUMEN

BACKGROUND: The phase 2 REGOMA trial suggested an encouraging overall survival benefit in glioblastoma patients at first relapse treated with the multikinase inhibitor regorafenib. Here, we evaluated the efficacy and side effects of regorafenib in a real-life setting. METHODS: From 2018 to 2021, 30 patients with progressive WHO CNS grade 3 or 4 gliomas treated with regorafenib (160 mg/day; first 3 weeks of each 4-week cycle) with individual dose adjustment depending on toxicity were retrospectively identified. Side effects were evaluated according to the Common Terminology Criteria for Adverse Events (version 5.0). MRI was obtained at baseline and after every second cycle. Tumor progression was assessed according to RANO criteria. After regorafenib initiation, the median PFS and OS were calculated. RESULTS: The median number of treatment lines before regorafenib was 2 (range 1-4). Most patients (73%) had two or more pretreatment lines. At first relapse, 27% of patients received regorafenib. A total of 94 regorafenib cycles were administered (median 2 cycles; range 1-9 cycles). Grade 3 and 4 side effects were observed in 47% and 7% of patients, respectively, and were not significantly increased in patients with two or more pretreatments (P > 0.05). The most frequent grade 3 or 4 side effects were laboratory abnormalities (62%). PFS was 2.6 months (range 0.8-8.2 months), and the OS was 6.2 months (range 0.9-24 months). CONCLUSIONS: In patients with progressive WHO grade 3 or 4 gliomas, predominantly with two pretreatment lines or more, regorafenib seems to be effective despite considerable grade 3 or 4 side effects.


Asunto(s)
Glioma , Compuestos de Fenilurea , Humanos , Piridinas , Recurrencia , Estudios Retrospectivos
8.
J Nucl Med ; 63(11): 1677-1682, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35422443

RESUMEN

In light of increasing health-care costs, higher medical expenses should be justified socioeconomically. Therefore, we calculated the effectiveness and cost effectiveness of PET using the radiolabeled amino acid O-(2-18F-fluoroethyl)-l-tyrosine (18F-FET) compared with conventional MRI for early identification of responders to adjuvant temozolomide chemotherapy. A recently published study in isocitrate dehydrogenase wild-type glioma patients suggested that 18F-FET PET parameter changes predicted a significantly longer survival already after 2 cycles whereas MRI changes were not significant. Methods: To determine the effectiveness and cost effectiveness of serial 18F-FET PET imaging, we analyzed published clinical data and calculated the associated costs from the perspective of the German Statutory Health Insurance system. Based on a decision-tree model, the effectiveness of 18F-FET PET and MRI was calculated-that is, the probability to correctly identify a responder as defined by an overall survival of at least 15 mo. To determine the cost effectiveness, the incremental cost effectiveness ratio (ICER) was calculated-that is, the cost for each additionally identified responder by 18F-FET PET who would have remained undetected by MRI. The robustness of the results was tested by deterministic and probabilistic Monte Carlo sensitivity analyses. Results: Compared with MRI, 18F-FET PET increased the rate of correctly identified responders to chemotherapy by 26%; thus, 4 patients needed to be examined by 18F-FET PET to identify 1 additional responder. Considering the respective costs for serial 18F-FET PET and MRI, the ICER resulted in €4,396.83 for each additional correctly identified responder by 18F-FET PET. Sensitivity analyses confirmed the robustness of the results. Conclusion: In contrast to conventional MRI, the model suggests that 18F-FET PET is cost-effective in terms of ICER values. Considering the high cost of temozolomide, the integration of 18F-FET PET has the potential to avoid premature chemotherapy discontinuation at reasonable cost.


Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Temozolomida/uso terapéutico , Análisis Costo-Beneficio , Neoplasias Encefálicas/metabolismo , Radiofármacos/uso terapéutico , Tomografía de Emisión de Positrones/métodos , Imagen por Resonancia Magnética/métodos , Tirosina
9.
Clin Cancer Res ; 27(13): 3704-3713, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33947699

RESUMEN

PURPOSE: The CeTeG/NOA-09 phase III trial demonstrated a significant survival benefit of lomustine-temozolomide chemoradiation in patients with newly diagnosed glioblastoma with methylated O6-methylguanine-DNA methyltransferase (MGMT) promoter. Following lomustine-temozolomide chemoradiation, late and prolonged pseudoprogression may occur. We here evaluated the value of amino acid PET using O-(2-[18F]fluoroethyl)-l-tyrosine (FET) for differentiating pseudoprogression from tumor progression. EXPERIMENTAL DESIGN: We retrospectively identified patients (i) who were treated off-study according to the CeTeG/NOA-09 protocol, (ii) had equivocal MRI findings after radiotherapy, and (iii) underwent additional FET-PET imaging for diagnostic evaluation (number of scans, 1-3). Maximum and mean tumor-to-brain ratios (TBRmax, TBRmean) and dynamic FET uptake parameters (e.g., time-to-peak) were calculated. In patients with more than one FET-PET scan, relative changes of TBR values were evaluated, that is, an increase or decrease of >10% compared with the reference scan was considered as tumor progression or pseudoprogression. Diagnostic performances were evaluated using ROC curve analyses and Fisher exact test. Diagnoses were confirmed histologically or clinicoradiologically. RESULTS: We identified 23 patients with 32 FET-PET scans. Within 5-25 weeks after radiotherapy (median time, 9 weeks), pseudoprogression occurred in 11 patients (48%). The parameter TBRmean calculated from the FET-PET performed 10 ± 7 days after the equivocal MRI showed the highest accuracy (87%) to identify pseudoprogression (threshold, <1.95; P = 0.029). The integration of relative changes of TBRmean further improved the accuracy (91%; P < 0.001). Moreover, the combination of static and dynamic parameters increased the specificity to 100% (P = 0.005). CONCLUSIONS: The data suggest that FET-PET parameters are of significant clinical value to diagnose pseudoprogression related to lomustine-temozolomide chemoradiation.


Asunto(s)
Antineoplásicos Alquilantes/administración & dosificación , Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/terapia , Quimioradioterapia , Glioblastoma/diagnóstico por imagen , Glioblastoma/terapia , Lomustina/administración & dosificación , Tomografía de Emisión de Positrones , Temozolomida/administración & dosificación , Tirosina/análogos & derivados , Adulto , Anciano , Progresión de la Enfermedad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Tomografía de Emisión de Positrones/métodos , Estudios Retrospectivos
10.
J Nucl Med ; 62(4): 464-470, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32887757

RESUMEN

We investigated the value of O-(2-18F-fluoroethyl)-l-tyrosine (18F-FET) PET for treatment monitoring of immune checkpoint inhibition (ICI) or targeted therapy (TT) alone or in combination with radiotherapy in patients with brain metastasis (BM) since contrast-enhanced MRI often remains inconclusive. Methods: We retrospectively identified 40 patients with 107 BMs secondary to melanoma (n = 29 with 75 BMs) or non-small cell lung cancer (n = 11 with 32 BMs) treated with ICI or TT who had 18F-FET PET (n = 60 scans) for treatment monitoring from 2015 to 2019. Most patients (n = 37; 92.5%) had radiotherapy during the course of the disease. In 27 patients, 18F-FET PET was used to differentiate treatment-related changes from BM relapse after ICI or TT. In 13 patients, 18F-FET PET was performed for response assessment to ICI or TT using baseline and follow-up scans (median time between scans, 4.2 mo). In all lesions, static and dynamic 18F-FET PET parameters were obtained (i.e., mean tumor-to-brain ratios [TBR], time-to-peak values). Diagnostic accuracies of PET parameters were evaluated by receiver-operating-characteristic analyses using the clinical follow-up or neuropathologic findings as a reference. Results: A TBR threshold of 1.95 differentiated BM relapse from treatment-related changes with an accuracy of 85% (P = 0.003). Metabolic responders to ICI or TT on 18F-FET PET had a significantly longer stable follow-up (threshold of TBR reduction relative to baseline, ≥10%; accuracy, 82%; P = 0.004). Furthermore, at follow-up, time to peak in metabolic responders increased significantly (P = 0.019). Conclusion:18F-FET PET may add valuable information for treatment monitoring in BM patients treated with ICI or TT.


Asunto(s)
Neoplasias Encefálicas/secundario , Neoplasias Encefálicas/terapia , Inmunoterapia , Neoplasias Pulmonares/patología , Melanoma/patología , Tirosina/análogos & derivados , Adulto , Anciano , Anciano de 80 o más Años , Neoplasias Encefálicas/diagnóstico por imagen , Terapia Combinada , Progresión de la Enfermedad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Terapia Molecular Dirigida , Estudios Retrospectivos , Resultado del Tratamiento
11.
J Nucl Med ; 62(7): 918-925, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33158907

RESUMEN

The goal of this study was to compare the value of contrast-enhanced MRI and O-(2-[18F]fluoroethyl)-l-tyrosine (18F-FET) PET for response assessment in glioma patients after adjuvant temozolomide chemotherapy (TMZ). Methods: After biopsy or resection and completion of radiotherapy with concomitant TMZ, 41 newly diagnosed and histomolecularly characterized glioma patients (glioblastoma, 90%; age range, 20-79 y) were subsequently treated with adjuvant TMZ. MR and 18F-FET PET imaging were performed at baseline and after the second cycle of adjuvant TMZ. We obtained 18F-FET metabolic tumor volumes (MTVs) as well as mean and maximum tumor-to-brain ratios (TBRmean and TBRmax, respectively). Threshold values of 18F-FET PET parameters to predict outcome were established by receiver-operating-characteristic analyses using a median progression-free survival (PFS) of ≥ 9 mo and overall survival (OS) of ≥ 15 mo as reference. MRI response assessment was based on the Response Assessment in Neuro-Oncology (RANO) working group criteria. The predictive value of changes of 18F-FET PET and MRI parameters on survival was evaluated subsequently using univariate and multivariate survival estimates. Results: After 2 cycles of adjuvant TMZ chemotherapy, a treatment-induced reduction of MTV and TBRmax predicted a significantly longer PFS and OS (both P ≤ 0.03; univariate survival analyses) whereas RANO criteria were not significant (P > 0.05). Multivariate survival analysis revealed that TBRmax changes predicted a prolonged PFS (P = 0.012) and changes of MTV a prolonged OS (P = 0.005) independent of O6-methylguanine-DNA-methyltransferase promoter methylation and other strong prognostic factors. Conclusion: Changes of 18F-FET PET parameters appear to be helpful for identifying responders to adjuvant TMZ early after treatment initiation.


Asunto(s)
Glioma , Adulto , Anciano , Neoplasias Encefálicas , Humanos , Persona de Mediana Edad , Temozolomida , Adulto Joven
12.
Cancers (Basel) ; 12(12)2020 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-33353180

RESUMEN

Currently, a reliable diagnostic test for differentiating pseudoprogression from early tumor progression is lacking. We explored the potential of O-(2-[18F]fluoroethyl)-L-tyrosine (FET) positron emission tomography (PET) radiomics for this clinically important task. Thirty-four patients (isocitrate dehydrogenase (IDH)-wildtype glioblastoma, 94%) with progressive magnetic resonance imaging (MRI) changes according to the Response Assessment in Neuro-Oncology (RANO) criteria within the first 12 weeks after completing temozolomide chemoradiation underwent a dynamic FET PET scan. Static and dynamic FET PET parameters were calculated. For radiomics analysis, the number of datasets was increased to 102 using data augmentation. After randomly assigning patients to a training and test dataset, 944 features were calculated on unfiltered and filtered images. The number of features for model generation was limited to four to avoid data overfitting. Eighteen patients were diagnosed with early tumor progression, and 16 patients had pseudoprogression. The FET PET radiomics model correctly diagnosed pseudoprogression in all test cohort patients (sensitivity, 100%; negative predictive value, 100%). In contrast, the diagnostic performance of the best FET PET parameter (TBRmax) was lower (sensitivity, 81%; negative predictive value, 80%). The results suggest that FET PET radiomics helps diagnose patients with pseudoprogression with a high diagnostic performance. Given the clinical significance, further studies are warranted.

13.
Eur J Nucl Med Mol Imaging ; 47(6): 1486-1495, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32034446

RESUMEN

PURPOSE: Integrated histomolecular diagnostics of gliomas according to the World Health Organization (WHO) classification of 2016 has refined diagnostic accuracy and prediction of prognosis. This study aimed at exploring the prognostic value of dynamic O-(2-[18F]-fluoroethyl)-L-tyrosine (FET) PET in newly diagnosed, histomolecularly classified astrocytic gliomas of WHO grades III or IV. METHODS: Before initiation of treatment, dynamic FET PET imaging was performed in patients with newly diagnosed glioblastoma (GBM) and anaplastic astrocytoma (AA). Static FET PET parameters such as maximum and mean tumour/brain ratios (TBRmax/mean), the metabolic tumour volume (MTV) as well as the dynamic FET PET parameters time-to-peak (TTP) and slope, were obtained. The predictive ability of FET PET parameters was evaluated concerning the progression-free and overall survival (PFS, OS). Using ROC analyses, threshold values for FET PET parameters were obtained. Subsequently, univariate Kaplan-Meier and multivariate Cox regression survival analyses were performed to assess the predictive power of these parameters for survival. RESULTS: Sixty patients (45 GBM and 15 AA patients) of two university centres were retrospectively identified. Patients with isocitrate dehydrogenase (IDH)-mutant or O6-methylguanine-DNA-methyltransferase (MGMT) promoter-methylated tumours had a significantly longer PFS and OS (both P < 0.001). Furthermore, ROC analysis of IDH-wildtype glioma patients (n = 45) revealed that a TTP > 25 min (AUC, 0.90; sensitivity, 90%; specificity, 87%; P < 0.001) was highly prognostic for longer PFS (13 vs. 7 months; P = 0.005) and OS (29 vs. 12 months; P < 0.001). In contrast, at a lower level of significance, TBRmax, TBRmean, and MTV were only prognostic for longer OS (P = 0.004, P = 0.038, and P = 0.048, respectively). Besides complete resection and a methylated MGMT promoter, TTP remained significant in multivariate survival analysis (all P ≤ 0.02), indicating an independent predictor for OS. CONCLUSIONS: Our data suggest that dynamic FET PET allows the identification of patients with longer OS among patients with newly diagnosed IDH-wildtype GBM and AA.


Asunto(s)
Astrocitoma , Neoplasias Encefálicas , Astrocitoma/diagnóstico por imagen , Astrocitoma/genética , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/genética , Humanos , Isocitrato Deshidrogenasa/genética , Clasificación del Tumor , Tomografía de Emisión de Positrones , Estudios Retrospectivos , Tirosina
14.
Case Rep Oncol ; 13(1): 35-42, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32095126

RESUMEN

Leptomeningeal carcinomatosis is an extremely rare, but devastating complication in pancreatic cancer patients with a poor prognosis despite multimodal treatment. We present a 51-year-old male patient with the very rare condition of leptomeningeal carcinomatosis originating from pancreatic cancer. He presented to our hospital with severe headache and neck stiffness 30 months after systemic chemotherapy. Cerebral and spinal MRI as well as cerebrospinal fluid examination confirmed the diagnosis of leptomeningeal carcinomatosis. The patient responded to gemcitabine plus nab-paclitaxel in terms of elimination of tumor cells from the CSF and concurrent clinical improvement for 3 months. The observed findings suggest that the combination of gemcitabine plus nab-paclitaxel is potentially effective in affected cerebrospinal fluid of pancreatic carcinoma patients.

15.
Neuro Oncol ; 22(1): 17-30, 2020 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-31437274

RESUMEN

The advent of immunotherapy using immune checkpoint inhibitors (ICIs) and targeted therapy (TT) has dramatically improved the prognosis of various cancer types. However, following ICI therapy or TT-either alone (especially ICI) or in combination with radiotherapy-imaging findings on anatomical contrast-enhanced MRI can be unpredictable and highly variable, and are often difficult to interpret regarding treatment response and outcome. This review aims at summarizing the imaging challenges related to TT and ICI monotherapy as well as combined with radiotherapy in patients with brain metastases, and to give an overview on advanced imaging techniques which potentially overcome some of these imaging challenges. Currently, major evidence suggests that imaging parameters especially derived from amino acid PET, perfusion-/diffusion-weighted MRI, or MR spectroscopy may provide valuable additional information for the differentiation of treatment-induced changes from brain metastases recurrence and the evaluation of treatment response.


Asunto(s)
Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/secundario , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Neuroimagen/métodos , Progresión de la Enfermedad , Humanos , Inmunoterapia/métodos , Terapia Molecular Dirigida/métodos , Resultado del Tratamiento
16.
Expert Rev Anticancer Ther ; 20(1): 9-15, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31842635

RESUMEN

Introduction: Currently, immunotherapy using vaccination strategies or oncolytic virus approaches, cell-based immunotherapy, and the blockade of immune checkpoints are under evaluation in patients with brain cancer. Here we summarize clinically significant imaging findings such as treatment-related changes detected by advanced neuroimaging techniques following the most suitable immunotherapy options currently used in neuro-oncology. We, furthermore, provide an overview of how these advanced imaging techniques may help to overcome shortcomings of standard MRI in the assessment and follow-up of patients with brain cancer.Areas covered: The current literature on neuroimaging for immunotherapy in the field of brain tumors, with a focus on gliomas and brain metastases is summarized.Expert commentary: Data suggest that imaging parameters primarily derived from amino acid PET, diffusion- and perfusion-weighted MRI, or MR spectroscopy are particularly helpful for the evaluation of treatment response and provide valuable information for the differentiation of treatment-induced changes from actual brain tumor progression following various immunotherapy approaches.


Asunto(s)
Neoplasias Encefálicas/terapia , Glioma/terapia , Inmunoterapia/métodos , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/patología , Progresión de la Enfermedad , Resistencia a Antineoplásicos , Glioma/diagnóstico por imagen , Glioma/patología , Humanos , Imagen por Resonancia Magnética/métodos , Imagen Molecular , Recurrencia Local de Neoplasia
17.
Eur J Nucl Med Mol Imaging ; 46(9): 1889-1901, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31203420

RESUMEN

BACKGROUND: Following brain cancer treatment, the capacity of anatomical MRI to differentiate neoplastic tissue from treatment-related changes (e.g., pseudoprogression) is limited. This study compared apparent diffusion coefficients (ADC) obtained by diffusion-weighted MRI (DWI) with static and dynamic parameters of O-(2-[18F]fluoroethyl)-L-tyrosine (FET) PET for the differentiation of treatment-related changes from tumour progression. PATIENTS AND METHODS: Forty-eight pretreated high-grade glioma patients with anatomical MRI findings suspicious for progression (median time elapsed since last treatment was 16 weeks) were investigated using DWI and dynamic FET PET. Maximum and mean tumour-to-brain ratios (TBRmax, TBRmean) as well as dynamic parameters (time-to-peak and slope values) of FET uptake were calculated. For mean ADC calculation, regions-of-interest analyses were performed on ADC maps calculated from DWI coregistered with the contrast-enhanced MR image. Diagnoses were confirmed neuropathologically (21%) or clinicoradiologically. Diagnostic performance was evaluated using receiver-operating-characteristic analyses or Fisher's exact test for a combinational approach. RESULTS: Ten of 48 patients had treatment-related changes (21%). The diagnostic performance of FET PET was significantly higher (threshold for both TBRmax and TBRmean, 1.95; accuracy, 83%; AUC, 0.89 ± 0.05; P < 0.001) than that of ADC values (threshold ADC, 1.09 × 10-3 mm2/s; accuracy, 69%; AUC, 0.73 ± 0.09; P = 0.13). The addition of static FET PET parameters to ADC values increased the latter's accuracy to 89%. The highest accuracy was achieved by combining static and dynamic FET PET parameters (93%). Moreover, in contrast to ADC values, TBRs <1.95 at suspected progression predicted a significantly longer survival (P = 0.01). CONCLUSIONS: Data suggest that static and dynamic FET PET provide valuable information concerning the differentiation of early treatment-related changes from tumour progression and outperform ADC measurement for this highly relevant clinical question.


Asunto(s)
Imagen de Difusión por Resonancia Magnética , Progresión de la Enfermedad , Glioma/diagnóstico por imagen , Glioma/patología , Tomografía de Emisión de Positrones , Tirosina/análogos & derivados , Adulto , Anciano , Anciano de 80 o más Años , Difusión , Femenino , Glioma/terapia , Humanos , Masculino , Persona de Mediana Edad , Análisis de Supervivencia , Adulto Joven
18.
Eur J Nucl Med Mol Imaging ; 46(3): 591-602, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30327856

RESUMEN

PURPOSE: Areas of contrast enhancement (CE) on MRI are usually the target for resection or radiotherapy target volume definition in glioblastomas. However, the solid tumour mass may extend beyond areas of CE. Amino acid PET can detect parts of the tumour that show no CE. We systematically investigated tumour volumes delineated by amino acid PET and MRI in patients with newly diagnosed, untreated glioblastoma. METHODS: Preoperatively, 50 patients with neuropathologically confirmed glioblastoma underwent O-(2-[18F]-fluoroethyl)-L-tyrosine (FET) PET, and fluid-attenuated inversion recovery (FLAIR) and contrast-enhanced MRI. Areas of CE were manually segmented. FET PET tumour volumes were segmented using a tumour-to-brain ratio of ≥1.6. The percentage overlap volumes, and Dice and Jaccard spatial similarity coefficients (DSC, JSC) were calculated. FLAIR images were evaluated visually. RESULTS: In 43 patients (86%), the FET tumour volume was significantly larger than the CE volume (21.5 ± 14.3 mL vs. 9.4 ± 11.3 mL; P < 0.001). Forty patients (80%) showed both increased uptake of FET and CE. In these 40 patients, the spatial similarity between FET uptake and CE was low (mean DSC 0.39 ± 0.21, mean JSC 0.26 ± 0.16). Ten patients (20%) showed no CE, and one of these patients showed no FET uptake. In five patients (10%), increased FET uptake was present outside areas of FLAIR hyperintensity. CONCLUSION: Our results show that the metabolically active tumour volume delineated by FET PET is significantly larger than tumour volume delineated by CE. Furthermore, the results strongly suggest that the information derived from both imaging modalities should be integrated into the management of patients with newly diagnosed glioblastoma.


Asunto(s)
Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/patología , Glioblastoma/diagnóstico por imagen , Glioblastoma/patología , Imagen por Resonancia Magnética , Tomografía de Emisión de Positrones , Carga Tumoral , Tirosina/análogos & derivados , Adulto , Anciano , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Persona de Mediana Edad
19.
Neuroimage Clin ; 20: 537-542, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30175040

RESUMEN

Background: The aim of this study was to investigate the potential of combined textural feature analysis of contrast-enhanced MRI (CE-MRI) and static O-(2-[18F]fluoroethyl)-L-tyrosine (FET) PET for the differentiation between local recurrent brain metastasis and radiation injury since CE-MRI often remains inconclusive. Methods: Fifty-two patients with new or progressive contrast-enhancing brain lesions on MRI after radiotherapy (predominantly stereotactic radiosurgery) of brain metastases were additionally investigated using FET PET. Based on histology (n = 19) or clinicoradiological follow-up (n = 33), local recurrent brain metastases were diagnosed in 21 patients (40%) and radiation injury in 31 patients (60%). Forty-two textural features were calculated on both unfiltered and filtered CE-MRI and summed FET PET images (20-40 min p.i.), using the software LIFEx. After feature selection, logistic regression models using a maximum of five features to avoid overfitting were calculated for each imaging modality separately and for the combined FET PET/MRI features. The resulting models were validated using cross-validation. Diagnostic accuracies were calculated for each imaging modality separately as well as for the combined model. Results: For the differentiation between radiation injury and recurrence of brain metastasis, textural features extracted from CE-MRI had a diagnostic accuracy of 81% (sensitivity, 67%; specificity, 90%). FET PET textural features revealed a slightly higher diagnostic accuracy of 83% (sensitivity, 88%; specificity, 75%). However, the highest diagnostic accuracy was obtained when combining CE-MRI and FET PET features (accuracy, 89%; sensitivity, 85%; specificity, 96%). Conclusions: Our findings suggest that combined FET PET/CE-MRI radiomics using textural feature analysis offers a great potential to contribute significantly to the management of patients with brain metastases.


Asunto(s)
Neoplasias Encefálicas/diagnóstico por imagen , Radioisótopos de Flúor , Imagen por Resonancia Magnética/métodos , Recurrencia Local de Neoplasia/diagnóstico por imagen , Tomografía de Emisión de Positrones/métodos , Traumatismos por Radiación/diagnóstico por imagen , Adolescente , Adulto , Anciano , Neoplasias Encefálicas/metabolismo , Femenino , Radioisótopos de Flúor/metabolismo , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Imagen Multimodal/métodos , Recurrencia Local de Neoplasia/metabolismo , Traumatismos por Radiación/metabolismo , Tirosina/metabolismo , Compuestos de Vinilo/metabolismo , Adulto Joven
20.
Eur J Nucl Med Mol Imaging ; 45(13): 2377-2386, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29982845

RESUMEN

BACKGROUND: The goal of this prospective study was to compare the value of both conventional MRI and O-(2-18F-fluoroethyl)-L-tyrosine (FET) PET for response evaluation in glioblastoma patients treated with bevacizumab plus lomustine (BEV/LOM) at first progression. METHODS: After chemoradiation with concomitant and adjuvant temozolomide, 21 IDH wild-type glioblastoma patients at first progression (age range, 33-75 years; MGMT promoter unmethylated, 81%) were treated with BEV/LOM. Contrast-enhanced MRI and FET-PET scans were performed at baseline and after 8-10 weeks. We obtained FET metabolic tumor volumes (MTV) and tumor/brain ratios. Threshold values of FET-PET parameters for treatment response were established by ROC analyses using the post-progression overall survival (OS) ≤/>9 months as the reference. MRI response assessment was based on RANO criteria. The predictive ability of FET-PET thresholds and MRI changes on early response assessment was evaluated subsequently concerning OS using uni- and multivariate survival estimates. RESULTS: Early treatment response as assessed by RANO criteria was not predictive for an OS>9 months (P = 0.203), whereas relative reductions of all FET-PET parameters significantly predicted an OS>9 months (P < 0.05). The absolute MTV at follow-up enabled the most significant OS prediction (sensitivity, 85%; specificity, 88%; P = 0.001). Patients with an absolute MTV below 5 ml at follow-up survived significantly longer (12 vs. 6 months, P < 0.001), whereas early responders defined by RANO criteria lived only insignificantly longer (9 vs. 6 months; P = 0.072). The absolute MTV at follow-up remained significant in the multivariate survival analysis (P = 0.006). CONCLUSIONS: FET-PET appears to be useful for identifying responders to BEV/LOM early after treatment initiation.


Asunto(s)
Bevacizumab/uso terapéutico , Glioblastoma/diagnóstico por imagen , Glioblastoma/tratamiento farmacológico , Lomustina/uso terapéutico , Imagen por Resonancia Magnética , Tomografía de Emisión de Positrones , Tirosina/análogos & derivados , Adulto , Anciano , Bevacizumab/efectos adversos , Progresión de la Enfermedad , Interacciones Farmacológicas , Femenino , Humanos , Lomustina/efectos adversos , Masculino , Persona de Mediana Edad , Análisis de Supervivencia , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA