Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
2.
Neural Netw ; 179: 106518, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39068680

RESUMEN

Graph convolutional networks (GCNs) as the emerging neural networks have shown great success in Prognostics and Health Management because they can not only extract node features but can also mine relationship between nodes in the graph data. However, the most existing GCNs-based methods are still limited by graph quality, variable working conditions, and limited data, making them difficult to obtain remarkable performance. Therefore, it is proposed in this paper a two stage importance-aware subgraph convolutional network based on multi-source sensors named I2SGCN to address the above-mentioned limitations. In the real-world scenarios, it is found that the diagnostic performance of the most existing GCNs is commonly bounded by the graph quality because it is hard to get high quality through a single sensor. Therefore, we leveraged multi-source sensors to construct graphs that contain more fault-based information of mechanical equipment. Then, we discovered that unsupervised domain adaptation (UDA) methods only use single stage to achieve cross-domain fault diagnosis and ignore more refined feature extraction, which can make the representations contained in the features inadequate. Hence, it is proposed the two-stage fault diagnosis in the whole framework to achieve UDA. In the first stage, the multiple-instance learning is adopted to obtain the importance factor of each sensor towards preliminary fault diagnosis. In the second stage, it is proposed I2SGCN to achieve refined cross-domain fault diagnosis. Moreover, we observed that deficient and limited data may cause label bias and biased training, leading to reduced generalization capacity of the proposed method. Therefore, we constructed the feature-based graph and importance-based graph to jointly mine more effective relationship and then presented a subgraph learning strategy, which not only enriches sufficient and complementary features but also regularizes the training. Comprehensive experiments conducted on four case studies demonstrate the effectiveness and superiority of the proposed method for cross-domain fault diagnosis, which outperforms the state-of-the art methods.


Asunto(s)
Redes Neurales de la Computación , Humanos , Algoritmos , Aprendizaje Automático no Supervisado , Aprendizaje Profundo
3.
Sci Rep ; 14(1): 13082, 2024 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-38844566

RESUMEN

Accurate classification of tooth development stages from orthopantomograms (OPG) is crucial for dental diagnosis, treatment planning, age assessment, and forensic applications. This study aims to develop an automated method for classifying third molar development stages using OPGs. Initially, our data consisted of 3422 OPG images, each classified and curated by expert evaluators. The dataset includes images from both Q3 (lower jaw left side) and Q4 (lower right side) regions extracted from panoramic images, resulting in a total of 6624 images for analysis. Following data collection, the methodology employs region of interest extraction, pre-filtering, and extensive data augmentation techniques to enhance classification accuracy. The deep neural network model, including architectures such as EfficientNet, EfficientNetV2, MobileNet Large, MobileNet Small, ResNet18, and ShuffleNet, is optimized for this task. Our findings indicate that EfficientNet achieved the highest classification accuracy at 83.7%. Other architectures achieved accuracies ranging from 71.57 to 82.03%. The variation in performance across architectures highlights the influence of model complexity and task-specific features on classification accuracy. This research introduces a novel machine learning model designed to accurately estimate the development stages of lower wisdom teeth in OPG images, contributing to the fields of dental diagnostics and treatment planning.


Asunto(s)
Aprendizaje Profundo , Tercer Molar , Radiografía Panorámica , Tercer Molar/crecimiento & desarrollo , Tercer Molar/diagnóstico por imagen , Humanos , Redes Neurales de la Computación , Procesamiento de Imagen Asistido por Computador/métodos , Femenino , Masculino
4.
Artículo en Inglés | MEDLINE | ID: mdl-38648130

RESUMEN

In this article, we propose a set of transform-based neural network layers as an alternative to the 3 x 3 Conv2D layers in convolutional neural networks (CNNs). The proposed layers can be implemented based on orthogonal transforms, such as the discrete cosine transform (DCT), Hadamard transform (HT), and biorthogonal block wavelet transform (BWT). Furthermore, by taking advantage of the convolution theorems, convolutional filtering operations are performed in the transform domain using elementwise multiplications. Trainable soft-thresholding layers, that remove noise in the transform domain, bring nonlinearity to the transform domain layers. Compared with the Conv2D layer, which is spatial-agnostic and channel-specific, the proposed layers are location-specific and channel-specific. Moreover, these proposed layers reduce the number of parameters and multiplications significantly while improving the accuracy results of regular ResNets on the ImageNet-1K classification task. Furthermore, they can be inserted with a batch normalization (BN) layer before the global average pooling layer in the conventional ResNets as an additional layer to improve classification accuracy.

5.
Sci Adv ; 9(36): eadg7481, 2023 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-37682993

RESUMEN

Physically unclonable functions (PUFs) are a class of hardware-specific security primitives based on secret keys extracted from integrated circuits, which can protect important information against cyberattacks and reverse engineering. Here, we put forward an emerging type of PUF in the electromagnetic domain by virtue of the self-dual absorber-emitter singularity that uniquely exists in the non-Hermitian parity-time (PT)-symmetric structures. At this self-dual singular point, the reconfigurable emissive and absorptive properties with order-of-magnitude differences in scattered power can respond sensitively to admittance or phase perturbations caused by, for example, manufacturing imperfectness. Consequently, the entropy sourced from inevitable manufacturing variations can be amplified, yielding excellent PUF security metrics in terms of randomness and uniqueness. We show that this electromagnetic PUF can be robust against machine learning-assisted attacks based on the Fourier regression and generative adversarial network. Moreover, the proposed PUF concept is wavelength-scalable in radio frequency, terahertz, infrared, and optical systems, paving a promising avenue toward applications of cryptography and encryption.

6.
Orthod Craniofac Res ; 26 Suppl 1: 111-117, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36855827

RESUMEN

OBJECTIVE: A study of supervised automated classification of the cervical vertebrae maturation (CVM) stages using deep learning (DL) network is presented. A parallel structured deep convolutional neural network (CNN) with a pre-processing layer that takes X-ray images and the age as the input is proposed. METHODS: A total of 1018 cephalometric radiographs were labelled and classified according to the CVM stages. The images were separated according to gender for better model-fitting. The images were cropped to extract the cervical vertebrae automatically using an object detector. The resulting images and the age inputs were used to train the proposed DL model: AggregateNet with a set of tunable directional edge enhancers. After the features of the images were extracted, the age input was concatenated to the output feature vector. To have the parallel network not overfit, data augmentation was used. The performance of our CNN model was compared with other DL models, ResNet20, Xception, MobileNetV2 and custom-designed CNN model with the directional filters. RESULTS: The proposed innovative model that uses a parallel structured network preceded with a pre-processing layer of edge enhancement filters achieved a validation accuracy of 82.35% in CVM stage classification on female subjects, 75.0% in CVM stage classification on male subjects, exceeding the accuracy achieved with the other DL models investigated. The effectiveness of the directional filters is reflected in the improved performance attained in the results. If AggregateNet is used without directional filters, the test accuracy decreases to 80.0% on female subjects and to 74.03% on male subjects. CONCLUSION: AggregateNet together with the tunable directional edge filters is observed to produce higher accuracy than the other models that we investigated in the fully automated determination of the CVM stages.


Asunto(s)
Aprendizaje Profundo , Humanos , Masculino , Femenino , Radiografía , Vértebras Cervicales/diagnóstico por imagen
7.
PLoS One ; 17(7): e0269198, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35776715

RESUMEN

INTRODUCTION: We aim to apply deep learning to achieve fully automated detection and classification of the Cervical Vertebrae Maturation (CVM) stages. We propose an innovative custom-designed deep Convolutional Neural Network (CNN) with a built-in set of novel directional filters that highlight the edges of the Cervical Vertebrae in X-ray images. METHODS: A total of 1018 Cephalometric radiographs were labeled and classified according to the Cervical Vertebrae Maturation (CVM) stages. The images were cropped to extract the cervical vertebrae using an Aggregate Channel Features (ACF) object detector. The resulting images were used to train four different Deep Learning (DL) models: our proposed CNN, MobileNetV2, ResNet101, and Xception, together with a set of tunable directional edge enhancers. When using MobileNetV2, ResNet101 and Xception, data augmentation is adopted to allow adequate network complexity while avoiding overfitting. The performance of our CNN model was compared with that of MobileNetV2, ResNet101 and Xception with and without the use of directional filters. For validation and performance assessment, k-fold cross-validation, ROC curves, and p-values were used. RESULTS: The proposed innovative model that uses a CNN preceded with a layer of tunable directional filters achieved a validation accuracy of 84.63%84.63% in CVM stage classification into five classes, exceeding the accuracy achieved with the other DL models investigated. MobileNetV2, ResNet101 and Xception used with directional filters attained accuracies of 78.54%, 74.10%, and 80.86%, respectively. The custom-designed CNN method also achieves 75.11% in six-class CVM stage classification. The effectiveness of the directional filters is reflected in the improved performance attained in the results. If the custom-designed CNN is used without the directional filters, the test accuracy decreases to 80.75%. In the Xception model without the directional filters, the testing accuracy drops slightly to 79.42% in the five-class CVM stage classification. CONCLUSION: The proposed model of a custom-designed CNN together with the tunable Directional Filters (CNNDF) is observed to provide higher accuracy than the commonly used pre-trained network models that we investigated in the fully automated determination of the CVM stages.


Asunto(s)
Aprendizaje Profundo , Vértebras Cervicales/diagnóstico por imagen , Redes Neurales de la Computación , Curva ROC
8.
J Comput Neurosci ; 51(3): 329-341, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-37148455

RESUMEN

Pyramidal neurons display a variety of active conductivities and complex morphologies that support nonlinear dendritic computation. Given growing interest in understanding the ability of pyramidal neurons to classify real-world data, in our study we applied both a detailed pyramidal neuron model and the perceptron learning algorithm to classify real-world ECG data. We used Gray coding to generate spike patterns from ECG signals as well as investigated the classification performance of the pyramidal neuron's subcellular regions. Compared with the equivalent single-layer perceptron, the pyramidal neuron performed poorly due to a weight constraint. A proposed mirroring approach for inputs, however, significantly boosted the classification performance of the neuron. We thus conclude that pyramidal neurons can classify real-world data and that the mirroring approach affects performance in a way similar to non-constrained learning.


Asunto(s)
Modelos Neurológicos , Células Piramidales , Células Piramidales/fisiología , Neuronas/fisiología , Redes Neurales de la Computación , Electrocardiografía
9.
Sensors (Basel) ; 20(10)2020 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-32443739

RESUMEN

In this paper, we propose a deep convolutional neural network for camera based wildfire detection. We train the neural network via transfer learning and use window based analysis strategy to increase the fire detection rate. To achieve computational efficiency, we calculate frequency response of the kernels in convolutional and dense layers and eliminate those filters with low energy impulse response. Moreover, to reduce the storage for edge devices, we compare the convolutional kernels in Fourier domain and discard similar filters using the cosine similarity measure in the frequency domain. We test the performance of the neural network with a variety of wildfire video clips and the pruned system performs as good as the regular network in daytime wild fire detection, and it also works well on some night wild fire video clips.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA