RESUMEN
Biomaterials are an indispensable component in tissue engineering that primarily functions to resemble the extracellular matrix of any tissue targeted for regeneration. In the last five decades, bioglass has been extensively used in the field of therapeutic and tissue engineering. The doping of metal components into bioglass and the synthesizing of nano bioglass particles have found remarkable implications, both in vivo and in vitro. These include various medical and biological applications such as rejuvenating tissues, facilitating regeneration, and delivering biomolecules into cells and therapy, etc. Therefore, the current review discusses the various techniques used in synthesizing bioglass particles, trends of various ion-doped nano bioglass, and their applications in therapy as well as in regenerative medicine, specifically in the fields of dentistry, cardiovascular, skin, nervous, and respiratory systems. Apart from these, this review also emphasizes the bioglass combined with diverse natural polymers (like collagen, chitosan, etc.) and their applications. Furthermore, we discuss the effectiveness of bioglass properties such as antibacterial effects, biomolecular delivery systems, tissue compatibility, and regenerative material. Finally, the prospects and limitations are elaborated.
Asunto(s)
Materiales Biocompatibles , Cerámica , Medicina Regenerativa , Ingeniería de Tejidos , Medicina Regenerativa/métodos , Cerámica/química , Cerámica/uso terapéutico , Humanos , Materiales Biocompatibles/química , Ingeniería de Tejidos/métodos , Animales , Andamios del Tejido/químicaRESUMEN
The physical energy activated techniques for cellular delivery and analysis is one of the most rapidly expanding research areas for a variety of biological and biomedical discoveries. These methods, such as electroporation, optoporation, sonoporation, mechanoporation, magnetoporation, etc., have been widely used in delivering different biomolecules into a range of primary and patient-derived cell types. However, the techniques when used individually have had limitations in delivery and co-delivery of diverse biomolecules in various cell types. In recent years, a number of studies have been performed by combining the different membrane disruption techniques, either sequentially or simultaneously, in a single study. The studies, referred to as combinatorial, or hybrid techniques, have demonstrated enhanced transfection, such as efficient macromolecular and gene delivery and co-delivery, at lower delivery parameters and with high cell viability. Such studies can open up new and exciting avenues for understanding the subcellular structure and consequently facilitate the development of novel therapeutic strategies. This review consequently aims at summarising the different developments in hybrid therapeutic techniques. The different methods discussed include mechano-electroporation, electro-sonoporation, magneto-mechanoporation, magnetic nanoparticles enhanced electroporation, and magnetic hyperthermia studies. We discuss the clinical status of the different methods and conclude with a discussion on the future prospects of the combinatorial techniques for cellular therapy and diagnostics.
Asunto(s)
Electroporación , Técnicas de Transferencia de Gen , Humanos , Transfección , Electroporación/métodos , Terapia Genética/métodos , Supervivencia CelularRESUMEN
Highly efficient intracellular delivery strategies are essential for developing therapeutic, diagnostic, biological, and various biomedical applications. The recent advancement of micro/nanotechnology has focused numerous researches towards developing microfluidic device-based strategies due to the associated high throughput delivery, cost-effectiveness, robustness, and biocompatible nature. The delivery strategies can be carrier-mediated or membrane disruption-based, where membrane disruption methods find popularity due to reduced toxicity, enhanced delivery efficiency, and cell viability. Among all of the membrane disruption techniques, the mechanoporation strategies are advantageous because of no external energy source required for membrane deformation, thereby achieving high delivery efficiencies and increased cell viability into different cell types with negligible toxicity. The past two decades have consequently seen a tremendous boost in mechanoporation-based research for intracellular delivery and cellular analysis. This article provides a brief review of the most recent developments on microfluidic-based mechanoporation strategies such as microinjection, nanoneedle arrays, cell-squeezing, and hydroporation techniques with their working principle, device fabrication, cellular delivery, and analysis. Moreover, a brief discussion of the different mechanoporation strategies integrated with other delivery methods has also been provided. Finally, the advantages, limitations, and future prospects of this technique are discussed compared to other intracellular delivery techniques.