Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Development ; 147(8)2020 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-32156757

RESUMEN

Despite the importance of Wnt signaling for adult intestinal stem cell homeostasis and colorectal cancer, relatively little is known about its role in colon formation during embryogenesis. The development of the colon starts with the formation and extension of the hindgut. We show that Wnt3a is expressed in the caudal embryo in a dorsal-ventral (DV) gradient across all three germ layers, including the hindgut. Using genetic and lineage-tracing approaches, we describe novel dorsal and ventral hindgut domains, and show that ventrolateral hindgut cells populate the majority of the colonic epithelium. A Wnt3a-ß-catenin-Sp5/8 pathway, which is active in the dorsal hindgut endoderm, is required for hindgut extension and colon formation. Interestingly, the absence of Wnt activity in the ventral hindgut is crucial for proper hindgut morphogenesis, as ectopic stabilization of ß-catenin in the ventral hindgut via gain- or loss-of-function mutations in Ctnnb1 or Apc, respectively, leads to severe colonic hyperplasia. Thus, the DV Wnt gradient is required to coordinate growth between dorsal and ventral hindgut domains to regulate the extension of the hindgut that leads to colon formation.


Asunto(s)
Tipificación del Cuerpo , Colon/embriología , Colon/metabolismo , Vía de Señalización Wnt , Proteína Wnt3A/metabolismo , beta Catenina/metabolismo , Animales , Proteínas Morfogenéticas Óseas/metabolismo , Proliferación Celular , Embrión de Mamíferos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Ratones Transgénicos , Morfogénesis
2.
Genesis ; 54(9): 497-502, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27411055

RESUMEN

Wnt/ß-catenin signals are important regulators of embryonic and adult stem cell self-renewal and differentiation and play causative roles in tumorigenesis. Purified recombinant Wnt3a protein, or Wnt3a-conditioned culture medium, has been widely used to study canonical Wnt signaling in vitro or ex vivo. To study the role of Wnt3a in embryogenesis and cancer models, we developed a Cre recombinase activatable Rosa26(Wnt3a) allele, in which a Wnt3a cDNA was inserted into the Rosa26 locus to allow for conditional, spatiotemporally defined expression of Wnt3a ligand for gain-of-function (GOF) studies in mice. To validate this reagent, we ectopically overexpressed Wnt3a in early embryonic progenitors using the T-Cre transgene. This resulted in up-regulated expression of a ß-catenin/Tcf-Lef reporter and of the universal Wnt/ß-catenin pathway target genes, Axin2 and Sp5. Importantly, T-Cre; Rosa26(Wnt3a) mutants have expanded presomitic mesoderm (PSM) and compromised somitogenesis and closely resemble previously studied T-Cre; Ctnnb1(ex3) (ß-catenin(GOF) ) mutants. These data indicate that the exogenously expressed Wnt3a stimulates the Wnt/ß-catenin signaling pathway, as expected. The Rosa26(Wnt3a) mouse line should prove to be an invaluable tool to study the function of Wnt3a in vivo.


Asunto(s)
Marcación de Gen/métodos , Transgenes , Proteína Wnt3A/genética , Animales , Genes Reporteros , Vectores Genéticos/genética , Integrasas/genética , Ratones , Ratones Endogámicos C57BL , Mutación , Regulación hacia Arriba , Proteína Wnt3A/metabolismo
3.
Mol Cell Biol ; 36(12): 1793-802, 2016 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-27090637

RESUMEN

The Wnt/ß-catenin signaling pathway controls embryonic development and adult stem cell maintenance through the regulation of transcription. Failure to downregulate Wnt signaling can result in embryonic malformations and cancer, highlighting the important role of negative regulators of the pathway. The Wnt pathway activates several negative feedback targets, including axin2 and Dkk1, that function at different levels of the signaling cascade; however, none have been identified that directly target active ß-catenin/Tcf1 transcriptional complexes. We show that Zfp703 is a Wnt target gene that inhibits Wnt/ß-catenin activity in Wnt reporter assays and in Wnt-dependent mesoderm differentiation in embryonic stem cells. Zfp703 binds directly to Tcf1 to inhibit ß-catenin/Tcf1 complex formation and does so independently of the Groucho/Tle transcriptional corepressor. We propose that Zfp703 is a novel feedback suppressor of Wnt/ß-catenin signaling that functions by inhibiting the association of ß-catenin with Tcf1 on Wnt response elements in target gene enhancers.


Asunto(s)
Células Madre Embrionarias/citología , Factor Nuclear 1-alfa del Hepatocito/metabolismo , Proteínas Represoras/metabolismo , beta Catenina/metabolismo , Animales , Diferenciación Celular , Desarrollo Embrionario , Células Madre Embrionarias/metabolismo , Humanos , Mesodermo/citología , Ratones , Proteínas Wnt/metabolismo , Vía de Señalización Wnt
4.
Proc Natl Acad Sci U S A ; 113(13): 3545-50, 2016 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-26969725

RESUMEN

The ancient, highly conserved, Wnt signaling pathway regulates cell fate in all metazoans. We have previously shown that combined null mutations of the specificity protein (Sp) 1/Klf-like zinc-finger transcription factors Sp5 and Sp8 (i.e., Sp5/8) result in an embryonic phenotype identical to that observed when core components of the Wnt/ß-catenin pathway are mutated; however, their role in Wnt signal transduction is unknown. Here, we show in mouse embryos and differentiating embryonic stem cells that Sp5/8 are gene-specific transcriptional coactivators in the Wnt/ß-catenin pathway. Sp5/8 bind directly to GC boxes in Wnt target gene enhancers and to adjacent, or distally positioned, chromatin-bound T-cell factor (Tcf) 1/lymphoid enhancer factor (Lef) 1 to facilitate recruitment of ß-catenin to target gene enhancers. Because Sp5 is itself directly activated by Wnt signals, we propose that Sp5 is a Wnt/ß-catenin pathway-specific transcript on factor that functions in a feed-forward loop to robustly activate select Wnt target genes.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Factor Nuclear 1-alfa del Hepatocito/metabolismo , Factor de Unión 1 al Potenciador Linfoide/metabolismo , Factores de Transcripción/metabolismo , Vía de Señalización Wnt/genética , beta Catenina/metabolismo , Animales , Proteínas de Unión al ADN/genética , Desarrollo Embrionario/genética , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Elementos de Facilitación Genéticos , Femenino , Factor Nuclear 1-alfa del Hepatocito/genética , Factor de Unión 1 al Potenciador Linfoide/genética , Ratones , Ratones Transgénicos , Embarazo , Factores de Transcripción/genética , Activación Transcripcional , beta Catenina/genética
5.
Development ; 142(9): 1628-38, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25922526

RESUMEN

In the development of the vertebrate body plan, Wnt3a is thought to promote the formation of paraxial mesodermal progenitors (PMPs) of the trunk region while suppressing neural specification. Recent lineage-tracing experiments have demonstrated that these trunk neural progenitors and PMPs derive from a common multipotent progenitor called the neuromesodermal progenitor (NMP). NMPs are known to reside in the anterior primitive streak (PS) region; however, the extent to which NMPs populate the PS and contribute to the vertebrate body plan, and the precise role that Wnt3a plays in regulating NMP self-renewal and differentiation are unclear. To address this, we used cell-specific markers (Sox2 and T) and tamoxifen-induced Cre recombinase-based lineage tracing to locate putative NMPs in vivo. We provide functional evidence for NMP location primarily in the epithelial PS, and to a lesser degree in the ingressed PS. Lineage-tracing studies in Wnt3a/ß-catenin signaling pathway mutants provide genetic evidence that trunk progenitors normally fated to enter the mesodermal germ layer can be redirected towards the neural lineage. These data, combined with previous PS lineage-tracing studies, support a model that epithelial anterior PS cells are Sox2(+)T(+) multipotent NMPs and form the bulk of neural progenitors and PMPs of the posterior trunk region. Finally, we find that Wnt3a/ß-catenin signaling directs trunk progenitors towards PMP fates; however, our data also suggest that Wnt3a positively supports a progenitor state for both mesodermal and neural progenitors.


Asunto(s)
Tipificación del Cuerpo/fisiología , Diferenciación Celular/fisiología , Linaje de la Célula/fisiología , Mesodermo/embriología , Células-Madre Neurales/fisiología , Línea Primitiva/citología , Transducción de Señal/fisiología , Animales , Técnicas Histológicas , Inmunohistoquímica , Hibridación in Situ , Mesodermo/citología , Ratones , Ratones Noqueados , Modelos Biológicos , Proteína Wnt3A/metabolismo
6.
Development ; 141(22): 4285-97, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25371364

RESUMEN

Neuromesodermal (NM) stem cells generate neural and paraxial presomitic mesoderm (PSM) cells, which are the respective progenitors of the spinal cord and musculoskeleton of the trunk and tail. The Wnt-regulated basic helix-loop-helix (bHLH) transcription factor mesogenin 1 (Msgn1) has been implicated as a cooperative regulator working in concert with T-box genes to control PSM formation in zebrafish, although the mechanism is unknown. We show here that, in mice, Msgn1 alone controls PSM differentiation by directly activating the transcriptional programs that define PSM identity, epithelial-mesenchymal transition, motility and segmentation. Forced expression of Msgn1 in NM stem cells in vivo reduced the contribution of their progeny to the neural tube, and dramatically expanded the unsegmented mesenchymal PSM while blocking somitogenesis and notochord differentiation. Expression of Msgn1 was sufficient to partially rescue PSM differentiation in Wnt3a(-/-) embryos, demonstrating that Msgn1 functions downstream of Wnt3a as the master regulator of PSM differentiation. Our data provide new insights into how cell fate decisions are imposed by the expression of a single transcriptional regulator.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diferenciación Celular/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Mesodermo/embriología , Músculo Esquelético/embriología , Sistema Nervioso/embriología , Animales , Inmunoprecipitación de Cromatina , Ensayo de Cambio de Movilidad Electroforética , Citometría de Flujo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica/genética , Inmunohistoquímica , Hibridación in Situ , Luciferasas , Mesodermo/citología , Ratones , Ratones Noqueados , Análisis por Micromatrices , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteína Wnt3A/genética
7.
PLoS One ; 9(1): e87018, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24475213

RESUMEN

Neuromesodermal (NM) stem cells reside in the primitive streak (PS) of gastrulating vertebrate embryos and generate precursors of the spinal cord and musculoskeletal system. Although Wnt3a/ß-catenin signaling is crucial for NM stem cell maintenance and differentiation, few key transcriptional effectors have been identified. Through a concerted transcriptional profiling and genetic approach we have determined that two Zn(2+)-finger transcription factors, Sp5 and Sp8, are regulated by Wnt3a in the PS, and are essential for neural and musculoskeletal patterning. These results identify Sp5 and Sp8 as pivotal downstream effectors of Wnt3a, and suggest that they are essential for the self-renewal and differentiation of NM stem cells.


Asunto(s)
Proteínas de Unión al ADN/genética , Mesodermo/metabolismo , Células-Madre Neurales/metabolismo , Línea Primitiva/metabolismo , Factores de Transcripción/genética , Proteína Wnt3A/genética , beta Catenina/genética , Animales , Proteínas de Unión al ADN/metabolismo , Embrión de Mamíferos , Gastrulación/genética , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Mesodermo/citología , Ratones , Ratones Transgénicos , Mutación , Células-Madre Neurales/citología , Línea Primitiva/citología , Factores de Transcripción/metabolismo , Transcripción Genética , Proteína Wnt3A/metabolismo , beta Catenina/metabolismo
8.
Nat Commun ; 2: 390, 2011 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-21750544

RESUMEN

Segmentation is an organizing principle of body plans. The segmentation clock, a molecular oscillator best illustrated by the cyclic expression of Notch signalling genes, controls the periodic cleavage of somites from unsegmented presomitic mesoderm during vertebrate segmentation. Wnt3a controls the spatiotemporal expression of cyclic Notch genes; however, the underlying mechanisms remain obscure. Here we show by transcriptional profiling of Wnt3a (-/-) embryos that the bHLH transcription factor, Mesogenin1 (Msgn1), is a direct target gene of Wnt3a. To identify Msgn1 targets, we conducted genome-wide studies of Msgn1 activity in embryonic stem cells. We show that Msgn1 is a major transcriptional activator of a Notch signalling program and synergizes with Notch to trigger clock gene expression. Msgn1 also indirectly regulates cyclic genes in the Fgf and Wnt pathways. Thus, Msgn1 is a central component of a transcriptional cascade that translates a spatial Wnt3a gradient into a temporal pattern of clock gene expression.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Relojes Biológicos/fisiología , Tipificación del Cuerpo/fisiología , Receptores Notch/metabolismo , Transducción de Señal/fisiología , Proteínas Wnt/metabolismo , Animales , Diferenciación Celular , Inmunoprecipitación de Cromatina , Ensayo de Cambio de Movilidad Electroforética , Células Madre Embrionarias , Perfilación de la Expresión Génica , Hibridación in Situ , Ratones , Ratones Transgénicos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteínas Wnt/genética , Proteína Wnt3 , Proteína Wnt3A , beta Catenina/metabolismo
9.
Development ; 135(1): 85-94, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18045842

RESUMEN

Somitogenesis is thought to be controlled by a segmentation clock, which consists of molecular oscillators in the Wnt3a, Fgf8 and Notch pathways. Using conditional alleles of Ctnnb1 (beta-catenin), we show that the canonical Wnt3a/beta-catenin pathway is necessary for molecular oscillations in all three signaling pathways but does not function as an integral component of the oscillator. Small, irregular somites persist in abnormally posterior locations in the absence of beta-catenin and cycling clock gene expression. Conversely, Notch pathway genes continue to oscillate in the presence of stabilized beta-catenin but boundary formation is delayed and anteriorized. Together, these results suggest that the Wnt3a/beta-catenin pathway is permissive but not instructive for oscillating clock genes and that it controls the anterior-posterior positioning of boundary formation in the presomitic mesoderm (PSM). The Wnt3a/beta-catenin pathway does so by regulating the activation of the segment boundary determination genes Mesp2 and Ripply2 in the PSM through the activation of the Notch ligand Dll1 and the mesodermal transcription factors T and Tbx6. Spatial restriction of Ripply2 to the anterior PSM is ensured by the Wnt3a/beta-catenin-mediated repression of Ripply2 in posterior PSM. Thus, Wnt3a regulates somitogenesis by activating a network of interacting target genes that promote mesodermal fates, activate the segmentation clock, and position boundary determination genes in the anterior PSM.


Asunto(s)
Mesodermo/metabolismo , Transducción de Señal , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Animales , Secuencia de Bases , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Biomarcadores , Embrión de Mamíferos/embriología , Embrión de Mamíferos/metabolismo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Ratones , Ratones Transgénicos , Datos de Secuencia Molecular , Mutación/genética , Fenotipo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Proteínas de Dominio T Box , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética/genética , Proteínas Wnt/genética , Proteína Wnt3 , Proteína Wnt3A , beta Catenina/genética
10.
J Cell Sci ; 119(Pt 14): 3008-19, 2006 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-16803869

RESUMEN

The guanine nucleotide-exchange factor (GEF) Ect2 is essential for cytokinesis. Here we studied the subcellular localization of Ect2 and examined the consequences of either depleting or overexpressing Ect2 in human cells. We show that in mitotic cells Ect2 localizes to the central spindle and to the cell cortex. The latter association is mediated through a PH domain in Ect2 and central spindle localization requires the MKlp1-MgcRacGAP and MKlp2-Aurora-B complexes. Ect2 directly interacts with MKlp1-MgcRacGAP through its BRCT domain, whereas MKlp2-Aurora-B probably exerts a regulatory role in Ect2 central spindle targeting. Depletion of Ect2 impaired cleavage furrow formation and RhoA and Citron kinase failed to accumulate at the cleavage furrow. Ect2 displacement from the central spindle revealed that physiological levels of this protein in this location are not crucial for RhoA activation and cytokinesis. In cells overexpressing appropriate N-terminal Ect2 fragments, RhoA and Citron kinase localized to the cleavage furrow and ingression occurred, but abscission failed. This failure could be correlated with the persistence of these fragments at structures surrounding the midbody, suggesting that abscission requires the displacement of Ect2 from the contractile ring and its re-import into the nucleus.


Asunto(s)
Citocinesis , Expresión Génica , Proteínas Proto-Oncogénicas/deficiencia , Proteínas Proto-Oncogénicas/metabolismo , Aurora Quinasa B , Aurora Quinasas , Núcleo Celular/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intracelular , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Estructura Terciaria de Proteína , Transporte de Proteínas , Proteínas Proto-Oncogénicas/genética , Huso Acromático/metabolismo , Proteína de Unión al GTP rhoA/metabolismo
11.
J Cell Biol ; 172(3): 363-72, 2006 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-16431929

RESUMEN

Multiple mitotic kinesins and microtubule-associated proteins (MAPs) act in concert to direct cytokinesis (Glotzer, M. 2005. Science. 307:1735-1739). In anaphase cells, many of these proteins associate with an antiparallel array of microtubules termed the central spindle. The MAP and microtubule-bundling protein PRC1 (protein-regulating cytokinesis 1) is one of the key molecules required for the integrity of this structure (Jiang, W., G. Jimenez, N.J. Wells, T.J. Hope, G.M. Wahl, T. Hunter, and R. Fukunaga. 1998. Mol. Cell. 2:877-885; Mollinari, C., J.P. Kleman, W. Jiang, G. Schoehn, T. Hunter, and R.L. Margolis. 2002. J. Cell Biol. 157:1175-1186). In this study, we identify an interaction between endogenous PRC1 and the previously uncharacterized kinesin KIF14 as well as other mitotic kinesins (MKlp1/CHO1, MKlp2, and KIF4) with known functions in cytokinesis (Hill, E., M. Clarke, and F.A. Barr. 2000. EMBO J. 19:5711-5719; Matuliene, J., and R. Kuriyama. 2002. Mol. Biol. Cell. 13:1832-1845; Kurasawa, Y., W.C. Earnshaw, Y. Mochizuki, N. Dohmae, and K. Todokoro. 2004. EMBO J. 23:3237-3248). We find that KIF14 targets to the central spindle via its interaction with PRC1 and has an essential function in cytokinesis. In KIF14-depleted cells, citron kinase but not other components of the central spindle and cleavage furrow fail to localize. Furthermore, the localization of KIF14 and citron kinase to the central spindle and midbody is codependent, and they form a complex depending on the activation state of citron kinase. Contrary to a previous study (Di Cunto, F., S. Imarisio, E. Hirsch, V. Broccoli, A. Bulfone, A. Migheli, C. Atzori, E. Turco, R. Triolo, G.P. Dotto, et al. 2000. Neuron. 28:115-127), we find a general requirement for citron kinase in human cell division. Together, these findings identify a novel pathway required for efficient cytokinesis.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Citocinesis/fisiología , Cinesinas/fisiología , Proteínas Oncogénicas/fisiología , Proteínas Serina-Treonina Quinasas/fisiología , Sitios de Unión/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Citoplasma/metabolismo , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intracelular , Cinesinas/genética , Cinesinas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Modelos Genéticos , Proteínas Oncogénicas/genética , Proteínas Oncogénicas/metabolismo , Unión Proteica , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , ARN Interferente Pequeño/genética , Huso Acromático/metabolismo , Transfección
12.
Oncogene ; 24(12): 2076-86, 2005 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-15688006

RESUMEN

Originally identified in Drosophila melanogaster, the Warts(Wts)/Lats protein kinase has been proposed to function with two other Drosophila proteins, Hippo (Hpo) and Salvador (Sav), in the regulation of cell cycle exit and apoptosis. In mammals, two candidate Warts/Lats homologs, termed Lats1 and Lats2, have been described, and the targeted disruption of LATS1 in mice increases tumor formation. Little, however, is known about the function and regulation of human Lats kinases. Here we report that human Mst2, a STE20-family member and purported Hpo ortholog, phosphorylates and activates both Lats1 and Lats2. Deletion analysis revealed that regulation of Lats1 occurs through the C-terminal, catalytic domain. Within this domain, two regulatory phosphorylation sites were identified by mass spectrometry. These sites, S909 in the activation loop and T1079 within a hydrophobic motif, have been highly conserved during evolution. Moreover, a direct interaction was observed between Mst2 and hWW45, a putative ortholog of Drosophila Sav. These results indicate that Mst2-like kinases regulate Lats kinase activities in an evolutionarily conserved regulatory pathway. Although the function of this pathway remains poorly understood in mammals, it is intriguing that, in Drosophila, it has been linked to development and tissue homeostasis.


Asunto(s)
Proteínas Serina-Treonina Quinasas/metabolismo , Secuencia de Aminoácidos , Animales , Línea Celular , Drosophila melanogaster , Regulación de la Expresión Génica , Genes Supresores de Tumor , Células HeLa , Humanos , Riñón , Fragmentos de Péptidos/química , Proteínas Serina-Treonina Quinasas/genética , Serina-Treonina Quinasa 3 , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Proteínas Supresoras de Tumor/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA