Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cureus ; 16(4): e58958, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38800336

RESUMEN

Background Ixora coccinea is a medicinal plant with many active constituents that are responsible for wound healing and have anticancer properties. Herbal extracts increase the mechanisms related to wound healing, like blood clotting, fighting infection, and epithelialization. The effect responsible for this property may be the presence of phytoconstituents like flavonoids, polyphenols, and alkaloids. Many researchers have evaluated the wound-healing effect of I. coccinea leaf extract in aqueous methanol. This study aimed to determine the in vitro wound healing and anticancer efficacy of I. coccinea leaf ethyl acetate extract and evaluate the in silico docking of the selected phytoconstituents of I. coccinea in the 2vcj protein. Materials and methods The human dermal fibroblast cell line was used to determine the rates of cell migration and proliferation for evaluating the wound-healing effect of the I. coccinea leaf ethyl acetate fraction. 4',6-diamidino-2-phenylindole (DAPI) fluorescence labeling was used to estimate the rate of cell migration. The one-step TUNEL (TdT-mediated dUTP Nick-End Labeling) in situ apoptosis kit and the annexin V-FITC/7-AAD apoptosis kit were used to perform DNA damage assays in the malignant melanoma cell line. The ethyl acetate fraction of I. coccinea leaves was analyzed for its impact on wound healing markers, including keratin-10, keratin-14, type IV collagen, and α-SMA. Results The wound-healing nature was interesting in the ethyl acetate fraction at doses of 50 µg/mL and 100 µg/mL. Both studies involved in the DNA damage study against malignant melanoma cell lines showed the cleavage of apoptotic cancer cells, which was detected using a fluorescence microscope. When compared with the control, a dose of 100 µg/ml of ethyl acetate fraction from the leaves of I. coccinea showed fibroblast migration of cells into the wound area. The statistical values were considered significant at the level of P < 0.05. An in silico docking study on the 2vcj protein revealed that selected phytoconstituents of I. coccinea resulted in good docking scores to inhibit Hsp90. Conclusion I. coccinea ethyl acetate leaf extract can inhibit the growth of malignant melanoma cell lines and promote wound healing, as shown by the study results. It might be a viable therapeutic modality for skin cancer.

2.
Cureus ; 16(3): e55396, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38562312

RESUMEN

Background Ixora species are perennial shrubs and flowering plants belonging to the family Rubiaceae. The leaf and flower parts of Ixora coccinea (I. coccinea) andIxora alba (I. alba) were aimed at isolating their active fractions. The present study was to determine in vitro antitumor activity against malignant melanoma cell lines for phytosome formulation. Materials and methods Two species, I. coccinea (red flowers and leaves) and I. alba (white flowers and leaves), were selected, and this study focused on determining the active fraction by comparing the in vitro antimicrobial and antioxidant potentials of petroleum ether, chloroform, ethyl acetate, and hydroalcoholic (ethanol:water, 70:30 v/v) extracts. The identified potent extract was subjected to in vitro anticancer activity in malignant melanoma cell lines. Results A phytochemical study revealed phytosterols, flavonoids, proteins, amino acids, alkaloids, carbohydrates, phenols, tannins, and diterpenes. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay was used to evaluate the antioxidant effect of I. coccinea and I. alba leaf and flower extracts. In the DPPH assay, I. coccinea flower hydroalcoholic extract (ICFHA) had an IC50 value of 248.99 µg/mL, and I. coccinea leaf hydroalcoholic extract (ICLHA) had an IC50 value of 268.87 µg/mL. These two extracts had a lower value with a higher antioxidant effect. In the total antioxidant assay, I. coccinea leaf ethyl acetate extract (ICLEA) and I. coccinea leaf chloroform extract (ICLCE) have 77.4 ± 0.05 and 68.9 ± 0.03 mg of ascorbic acid equivalent per gm of extract, respectively. These two extracts exhibited a high antioxidant effect. The antimicrobial potential was evaluated using selected bacterial and fungal strains using the agar-well diffusion method. Petroleum ether and chloroform extracts of I. coccinea and I. alba leaves and flowers did not possess antimicrobial activity with any of the bacterial or fungal strains. An ethyl acetate extract and a hydroalcoholic extract of I. coccinea leaves and flowers showed antimicrobial activity against Enterococcus faecalis, Candida albicans, and Staphylococcus aureus. An ethyl acetate extract of I. coccinea flower and a hydroalcoholic extract of I. alba leaf showed a significant zone of inhibition when compared with standard chloramphenicol for all three selected strains, which may be due to the presence of active phytoconstituents. ICLHA showed a MIC of ≤300 µg/mL for Enterococcus faecalis and Staphylococcus aureus and ≤400 µg/mL for Candida albicans microbial strains. The high total flavonoid content was reported in ICLEA at 771.31 µg/mL and in I. coccinea flower ethyl acetate extract (ICFEA) at 694.69 µg/mL. High-performance thin layer chromatography (HPTLC) analysis showed a high quercetin (QCE) content in the ICLEA extract. To prove the in vitro skin anticancer activity, an MTT assay was performed for the ICLEA extract in a malignant melanoma cell line, and the IC50 value was reported as 7.96 µg/mL. Conclusion I. coccinea leaf ethyl acetate extract revealed a significant total flavonoid content in analysis through the aluminum chloride method, and the presence of a high QCE content was confirmed by HPTLC analysis. The in vitro skin anticancer activity of ICLEA was confirmed by the MTT assay; therefore, it was concluded that the ICLEA extract was a potent fraction and was selected to develop a phytosome.

3.
J AOAC Int ; 107(1): 14-21, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-37701979

RESUMEN

BACKGROUND: Glutathione, silybin, and curcumin are well-known potential antioxidants that are recommended as adjuvant therapy in cancer treatment. OBJECTIVE: Based on the principles of Analytical Quality by Design (AQbD) and green analytical chemistry, a simple, robust, and environmentally benign HPLC method for the simultaneous estimation of glutathione, silybin, and curcumin in bulk and formulation was performed. METHOD: Elution was achieved by an Agilent Eclipse XDB C18 (150 mm × 4.6 mm id, 3.5 µm) column using a gradient mobile phase composed of ethanol-water pH 6.7 (with 0.1%, v/v orthophosphoric acid) and 1.07 mL/min flow rate with PDA detection at 215 nm. Critical method variables were identified by risk assessment using an Ishikawa diagram, and multivariate optimization of the experimental conditions for the HPLC technique was accomplished by central composite design using design of experiments (DoE) software. RESULTS: The separation was achieved within 15 min, where the retention time of glutathione, silybin, and curcumin were 3.3, 4.9, and 7.3 min, respectively. The standard curve was linear in the range of 3.75-26.25 µg/mL for glutathione, 62.50-437.50 µg/mL for silybin, and 12.5-87.50 µg/mL for curcumin. The developed method was validated as per ICH guidelines Q2 (R1), and all the parameters are within specified limits. CONCLUSIONS: The proposed method is simple, precise, and robust, which can be employed for routine analysis and also concluded to be a greener approach according to AGREE, Green Analytical Procedure Index, and analytical eco-scale tools. HIGHLIGHTS: The chosen antioxidants were evaluated for the very first time simultaneously using the chromatographic technique in bulk and dosage forms employing green solvents. The peak purity of all three compounds was studied using a PDA detector. Wastage was reduced in terms of time, cost, and solvents by employing AQbD elements and tools. Complete application of environmentally sustainable safe solvents were employed.


Asunto(s)
Antioxidantes , Curcumina , Cromatografía Líquida de Alta Presión , Silibina , Glutatión , Solventes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA