Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
Langmuir ; 39(7): 2483-2490, 2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36753535

RESUMEN

The interfacial activity of poly(N-isopropylacrylamide) (pNIPAM) nanoparticles in the absence and presence of an anionic surfactant (sodium dodecyl sulfate, SDS) was studied at a crude oil-water interface. Both species are interfacially active and can lower the interfacial tension, but when mixed together, the interfacial composition was found to depend on the aging time and total component concentration. With the total component concentration less than 0.005 wt %, the reduced interfacial tension by pNIPAM was greater than SDS; thus, pNIPAM has a greater affinity to partition at the crude oil-water interface. However, the lower molecular weight (smaller molecule) of SDS compared to pNIPAM meant that it rapidly partitioned at the oil-water interface. When mixed, the interfacial composition was more SDS-like for low total component concentrations (≤ 0.001 wt %), while above, the interfacial composition was more pNIPAM-like, similar to the single component response. Applying a weighted arithmetic mean approach, the surface-active contribution (%) could be approximated for each component, pNIPAM and SDS. Even though SDS rapidly partitioned at the oil-water interface, it was shown to be displaced by the pNIPAM nanoparticles, and for the highest total component concentration, pNIPAM nanoparticles were predominantly contributing to the reduced oil-water interfacial tension. These findings have implications for the design and performance of fluids that are used to enhance crude oil production from reservoirs, particularly highlighting the aging time and component concentration effects to modify interfacial tensions.

2.
Ind Eng Chem Res ; 61(30): 11197-11208, 2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-35941848

RESUMEN

Polymer-induced drag reduction (DR) in fluids was studied using a rotational rheometer with double-gap concentric cylinder geometry. Although both polymers (polyacrylamide (PAM) and 2-acrylamido-2-methylpropane sulfonic acid (SPAM)) had molecular weights of several MDa, the contrasting polymer charge, nonionic and anionic, led to different polymer overlap concentrations (c*), PAM ≫ SPAM, and fluid rheology, with PAM fluids mostly Newtonian and SPAM fluids non-Newtonian (shear-thinning). Based on these differences, it was important to account for the infinite shear viscosity and normalize the polymer concentration by the intrinsic concentration (c int) so that the DR performance of the two polymer fluids could be accurately compared. Both polymers induced DR, and the maximum DR by SPAM (DR% = 28) was slightly higher than that by PAM (DR% = 22) when Re p ∼ 1700. For PAM, the loss of DR with time diminished at higher polymer concentrations (≥100 ppm, at Re p = 3149) but was found to be sensitive to high Re p, with polymer chain scission the likely cause of the reduced performance. For the semi-dilute SPAM fluids, the shear stability contrasted that of PAM, showing negligible dependence on the polymer concentration and Re p. The apparent rapid loss of DR was predominantly attributed to a time-dependent effect and not polymer degradation. In pipe flow, the maximum DR for SPAM was higher than that measured by rheometry and was attributed to differences in the flow conditions. However, changes in the normalized DR/c with polymer concentration were found to be consistent between the two flow geometries. Furthermore, the high fluid stresses in pipe flow (at high Re p) led to drag reduction losses consistent with PAM, as the time-dependent effect was not seen.

3.
J Colloid Interface Sci ; 596: 420-430, 2021 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-33848746

RESUMEN

HYPOTHESIS: Improved oil recovery by low-salinity injection correlates to the optimal brine concentration to achieve maximum dewetting of oil droplets on rock surfaces. While interfacial tension and electrical double layer forces are often cited as being determinant properties, we hypothesize that other structural/interfacial forces are more prominent in governing the system behavior. EXPERIMENTS: The sessile droplet technique was used to study the receding dynamics of oil droplets from flat hydrophilic substrates in brines of different salt type (NaCl and CaCl2) and concentration, and were studied at both low and elevated temperatures (60 and 140 °C) and pressures (1, 10, 100 and 200 bar). FINDINGS: At 1 bar and 60 °C, the minimum oil droplet-substrate adhesion force (FA) was determined at 34 mM NaCl and 225 mM CaCl2. For NaCl this strongly correlated to strengthening hydration forces, which for CaCl2 were diminished by long-range hydrophobic forces. These results highlight the importance of other non-DLVO forces governing the dewetting dynamics of heavy crude oil droplets. At 140 °C and 200 bar, the optimal brine concentrations were found to be much higher (1027 mM NaCl and 541 mM CaCl2), with higher concentrations likely attributed to weakening hydration forces at elevated temperatures.

4.
ACS Appl Mater Interfaces ; 11(44): 41676-41687, 2019 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-31609570

RESUMEN

In wind turbine gearboxes, (near-)surface initiated fatigue is attributed to be the primary failure mechanism. In this work, the surface fatigue of a hydrogenated tungsten carbide/amorphous carbon (WC/aC:H) thin-film was tested under severe cyclic tribo-contact using polyalphaolefin (PAO) and PAO + zinc dialkyldithiophosphate (ZDDP) lubricants. The film was characterized in terms of its structure and chemistry using X-ray diffraction, analytical transmission electron microscopy, including electron energy loss spectroscopy (EELS), as well as X-ray photoelectron spectroscopy (XPS). The multilayer carbon thin-film exhibited promising surface fatigue performance showing a slight change in the hybridization state of the aC:H matrix. Dehydrogenation of the thin-film and subsequent transformation of cleaved C-H bonds to nonplanar sp2 carbon rings were inferred from EELS and XPS results. While tribo-induced changes to the aC:H matrix were not influenced by a nanometer-thick ZDDP reaction-film, the rate of oxidation of WC and its oxidation state were affected. While accelerating surface fatigue on a steel surface, the ZDDP-tribofilm protected the WC/aC:H film from surface fatigue. In contrast to the formation of polyphosphates from ZDDP molecules on steel surfaces, it appeared that on the WC/aC:H thin film surface, ZDDP molecules decompose to ZnO, suppressing the oxidative degradation of WC.

5.
Rev Sci Instrum ; 90(3): 034101, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30927776

RESUMEN

This paper outlines the development of an automated underwater abrasion rig to assist in understanding the galvanic interaction induced by surface films when continuous localised mechanical film breakdown is encountered on the surface of carbon steel in CO2-containing environments. The rig enables the measurement of galvanic current between a small X65 steel pin and a larger steel specimen, as well as the intrinsic corrosion rate of an additional, uncoupled larger specimen. The surface film developed on the pin is removed periodically using an automated reciprocating and rotating shaft with a sand paper grit pad attached to the base, while the surface film is allowed to establish itself undisrupted on the large specimen. The setup essentially simulates a tribo-corrosion process where local removal of material occurs within a carbon steel pipeline as a result of periodic sand particle impingement. Initial results focus on validating the reproducibility of the technique, as well as determining the galvanic effects associated with iron carbide and iron carbonate for two model sets of conditions to highlight the capabilities of the system.

6.
ACS Omega ; 1(1): 77-83, 2016 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-31457118

RESUMEN

The remediation of metal and heavy metal contaminants from water ecosystems is a long-standing problem in the field of water management. The development of efficient, cost effective, and environmentally friendly natural polymer-based adsorbents is reported here. Magnetic chitosan (CS) and carboxymethylchitosan (CMC) nanocomposites have been synthesized by a simple one-step chemical coprecipitation method. The nanoparticles were assessed for the removal of Pb2+, Cu2+, and Zn2+ ions from aqueous solution. Kinetic and thermodynamic models were used to describe and understand the adsorption process of the ions onto the nanomaterials. The interactions between the ions and the biopolymer-based composites are reversible, which means that the nanoparticles can be regenerated in weakly acidic or EDTA containing solution without losing their activity and stability for water cleanup applications.

7.
J Colloid Interface Sci ; 444: 81-6, 2015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25585291

RESUMEN

Prevention of mineral fouling, known as scale, is a long-standing problem in a wide variety of industrial applications, such as oil production, water treatment, and many others. The build-up of inorganic scale such as calcium carbonate on surfaces and facilities is undesirable as it can result in safety risks and associated flow assurance issues. To date the overwhelming amount of research has mainly focused on chemical inhibition of scale bulk precipitation and little attention has been paid to deposition onto surfaces. The development of novel more environmentally-friendly strategies to control mineral fouling will most probably necessitate a multifunctional approach including surface engineering. In this study, we demonstrate that liquid infused porous surfaces provide an appealing strategy for surface modification to reduce mineral scale deposition. Microporous polypyrrole (PPy) coatings were fabricated onto stainless steel substrates by electrodeposition in potentiostatic mode. Subsequent infusion of low surface energy lubricants (fluorinated oil Fluorinert FC-70 and ionic liquid 1-Butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (BMIm)) into the porous coatings results in liquid-repellent slippery surfaces. To assess their ability to reduce surface scaling the coatings were subjected to a calcium carbonate scaling environment and the scale on the surface was quantified using Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES). PPy surfaces infused with BMIm (and Fluorinert to a lesser extent) exhibit remarkable antifouling properties with the calcium carbonate deposition reduced by 18 times in comparison to untreated stainless steel. These scaling tests suggest a correlation between the stability of the liquid infused surfaces in artificial brines and fouling reduction efficiency. The current work shows the great potential of such novel coatings for the management of mineral scale fouling.

8.
J Colloid Interface Sci ; 394: 539-44, 2013 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-23245630

RESUMEN

Ice on surfaces can have dramatic consequences for human activities. Over the last decades, the design of new materials with anti-icing properties has generated significant research efforts for the prevention of ice accretion. Here we investigate water freezing temperatures on untreated and negatively charged hydrophobic stainless steel surfaces and use these temperatures to evaluate icephobicity. Supercooled water microdroplets are deposited and undergo a slow controlled cooling until spontaneous freezing occurs. Textured hydrophobic stainless steel surfaces functionalized with anionic polyelectrolytes brushes display unexpectedly lower freezing temperatures, at least 7 °C lower than polished untreated steel. On the basis of the entropy reduction of the crystalline phase near a charged solid surface, we used a modification of the classical heterogeneous nucleation theory to explain the observed freezing temperatures lessening. Our results could help the design of new composite materials that more efficiently prevent ice formation.


Asunto(s)
Hielo/análisis , Acero Inoxidable/química , Electrólitos/química , Congelación , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA