Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Integr Plant Biol ; 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38990128

RESUMEN

Light and gravity coordinately regulate the directional growth of plants. Arabidopsis Gravitropic in the Light 1 (GIL1) inhibits the negative gravitropism of hypocotyls in red and far-red light, but the underlying molecular mechanisms remain elusive. Our study found that GIL1 is a plasma membrane-localized protein. In endodermal cells of the upper part of hypocotyls, GIL1 controls the negative gravitropism of hypocotyls. GIL1 directly interacts with PIN3 and inhibits the auxin transport activity of PIN3. Mutation of PIN3 suppresses the abnormal gravitropic response of gil1 mutant. The GIL1 protein is unstable in darkness but it is stabilized by red and far-red light. Together, our data suggest that light-stabilized GIL1 inhibits the negative gravitropism of hypocotyls by suppressing the activity of the auxin transporter PIN3, thereby enhancing the emergence of young seedlings from the soil.

2.
Nat Plants ; 9(4): 572-587, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36973414

RESUMEN

Plant genomes are characterized by large and complex gene families that often result in similar and partially overlapping functions. This genetic redundancy severely hampers current efforts to uncover novel phenotypes, delaying basic genetic research and breeding programmes. Here we describe the development and validation of Multi-Knock, a genome-scale clustered regularly interspaced short palindromic repeat toolbox that overcomes functional redundancy in Arabidopsis by simultaneously targeting multiple gene-family members, thus identifying genetically hidden components. We computationally designed 59,129 optimal single-guide RNAs that each target two to ten genes within a family at once. Furthermore, partitioning the library into ten sublibraries directed towards a different functional group allows flexible and targeted genetic screens. From the 5,635 single-guide RNAs targeting the plant transportome, we generated over 3,500 independent Arabidopsis lines that allowed us to identify and characterize the first known cytokinin tonoplast-localized transporters in plants. With the ability to overcome functional redundancy in plants at the genome-scale level, the developed strategy can be readily deployed by scientists and breeders for basic research and to expedite breeding efforts.


Asunto(s)
Arabidopsis , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Arabidopsis/genética , Fitomejoramiento , Plantas/genética , Genoma de Planta , Sistemas CRISPR-Cas , Plantas Modificadas Genéticamente/genética , Edición Génica
3.
Sci Adv ; 7(43): eabf6069, 2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-34669479

RESUMEN

The effects of abscisic acid (ABA) on plant growth, development, and response to the environment depend on local ABA concentrations. Here, we show that in Arabidopsis, ABA homeostasis is regulated by two previously unknown ABA transporters. Adenosine triphosphate­binding cassette subfamily G member 17 (ABCG17) and ABCG18 are localized to the plasma membranes of leaf mesophyll and cortex cells to redundantly promote ABA import, leading to conjugated inactive ABA sinks, thus restricting stomatal closure. ABCG17 and ABCG18 double knockdown revealed that the transporters encoded by these genes not only limit stomatal aperture size, conductance, and transpiration while increasing water use efficiency but also control ABA translocation from the shoot to the root to regulate lateral root emergence. Under abiotic stress conditions, ABCG17 and ABCG18 are transcriptionally repressed, promoting active ABA movement and response. The transport mechanism mediated by ABCG17 and ABCG18 allows plants to maintain ABA homeostasis under normal growth conditions.

4.
Curr Biol ; 31(10): 2111-2123.e9, 2021 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-33756108

RESUMEN

The plant cuticle is deposited on the surface of primary plant organs, such as leaves, fruits, and floral organs, forming a diffusion barrier and protecting the plant against various abiotic and biotic stresses. Cutin, the structural polyester of the plant cuticle, is synthesized in the apoplast. Plasma-membrane-localized ATP-binding cassette (ABC) transporters of the G family have been hypothesized to export cutin precursors. Here, we characterize SlABCG42 of tomato representing an ortholog of AtABCG32 in Arabidopsis. SlABCG42 expression in Arabidopsis complements the cuticular deficiencies of the Arabidopsis pec1/abcg32 mutant. RNAi-dependent downregulation of both tomato genes encoding proteins highly homologous to AtABCG32 (SlABCG36 and SlABCG42) leads to reduced cutin deposition and formation of a thinner cuticle in tomato fruits. By using a tobacco (Nicotiana benthamiana) protoplast system, we show that AtABCG32 and SlABCG42 have an export activity for 10,16-dihydroxy hexadecanoyl-2-glycerol, a cutin precursor in vivo. Interestingly, also free ω-hydroxy hexadecanoic acid as well as hexadecanedioic acid were exported, furthering the research on the identification of cutin precursors in vivo and the respective mechanisms of their integration into the cutin polymer.


Asunto(s)
Transportador de Casetes de Unión a ATP, Subfamilia G , Epidermis de la Planta , Proteínas de Plantas , Solanum lycopersicum , Transportador de Casetes de Unión a ATP, Subfamilia G/genética , Transportador de Casetes de Unión a ATP, Subfamilia G/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis , Regulación de la Expresión Génica de las Plantas , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Lípidos de la Membrana , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nicotiana/metabolismo
5.
EMBO J ; 31(13): 2965-80, 2012 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-22549467

RESUMEN

Polar transport of the plant hormone auxin is controlled by PIN- and ABCB/PGP-efflux catalysts. PIN polarity is regulated by the AGC protein kinase, PINOID (PID), while ABCB activity was shown to be dependent on interaction with the FKBP42, TWISTED DWARF1 (TWD1). Using co-immunoprecipitation (co-IP) and shotgun LC-MS/MS analysis, we identified PID as a valid partner in the interaction with TWD1. In-vitro and yeast expression analyses indicated that PID specifically modulates ABCB1-mediated auxin efflux in an action that is dependent on its kinase activity and that is reverted by quercetin binding and thus inhibition of PID autophosphorylation. Triple ABCB1/PID/TWD1 co-transfection in tobacco revealed that PID enhances ABCB1-mediated auxin efflux but blocks ABCB1 in the presence of TWD1. Phospho-proteomic analyses identified S634 as a key residue of the regulatory ABCB1 linker and a very likely target of PID phosphorylation that determines both transporter drug binding and activity. In summary, we provide evidence that PID phosphorylation has a dual, counter-active impact on ABCB1 activity that is coordinated by TWD1-PID interaction.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas de Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Arabidopsis/metabolismo , Transporte Biológico , Regulación de la Expresión Génica de las Plantas/fisiología , Fosfoproteínas/metabolismo , Fosforilación , Plantas Modificadas Genéticamente , Proteínas Serina-Treonina Quinasas/metabolismo , Proteómica , Quercetina/metabolismo , Proteínas de Unión a Tacrolimus/metabolismo , Nicotiana/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA